Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

Weakly Supervised Multi-task Learning for Semantic Parsing

Bo Shao'?*, Yeyun Gong?, Junwei Bao?, Jianshu Ji*, Guihong Cao®, Xiaola Lin' and Nan
Duan’
1School of Data and Computer Science, Sun Yat-sen University
2Microsoft Research Asia

3Microsoft Al and Research, Redmond WA, USA
shaobo2 @mail2.sysu.edu.cn, {yegong, nanduan, jianshuj, gucao} @microsoft.com,
baojunwei001 @ gmail.com, linx]@mail.sysu.edu.cn

Abstract

Semantic parsing is a challenging and important
task which aims to convert a natural language sen-
tence to a logical form. Existing neural seman-
tic parsing methods mainly use <question, logical
form> (Q-L) pairs to train a sequence-to-sequence
model. However, the amount of existing Q-L la-
beled data is limited and hard to obtain. We propose
an effective method which substantially utilizes la-
beling information from other tasks to enhance the
training of a semantic parser. We design a multi-
task learning model to train question type classifi-
cation, entity mention detection together with ques-
tion semantic parsing using a shared encoder. We
propose a weakly supervised learning method to
enhance our multi-task learning model with para-
phrase data, based on the idea that the paraphrased
questions should have the same logical form and
question type information. Finally, we integrate the
weakly supervised multi-task learning method to
an encoder-decoder framework. Experiments on a
newly constructed dataset and ComplexWebQues-
tions show that our proposed method outperforms
state-of-the-art methods which demonstrates the ef-
fectiveness and robustness of our method.

1 Introduction

The goal of semantic parsing is to convert a natural language
sentence to executable logical form [Zettlemoyer and Collins,
2007; Jia and Liang, 2016]. These methods are typically
in one of two research categories: grammar based semantic
parsing methods [Lee et al., 2016; Zhang et al., 2017; Zettle-
moyer and Collins, 2012] and neural semantic parsing meth-
ods [Dong and Lapata, 2018; Jia and Liang, 2016]. All these
methods only leverage the annotation corpus which contains
natural language sentence and logical form pairs. There are
3 issues with these methods, including: 1) how to accurately
predict the logical form template. 2) how to improve the per-
formance of entity mention generation in logical form. and 3)
how to handle diverse question expressions for the same logi-
cal form. To tackle these challenges, we focus on using addi-
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tional supervised signals from other tasks to help to train the
semantic parser. Table 1 shows some examples of a corpus
for different tasks. For the challenge of logical form template
prediction, in the semantic parsing data, each logical form
can be abstracted to a logical form template, such as the log-
ical form Az.people.person.date_of _birth(Obama, z) can
be abstracted to template Az.predicate(entity, x) and each
type of question has one type of logical form template. In-
tuitively, question type information is beneficial to logical
form template prediction. For the challenge of entity mention
generation, we use supervised information of mention tags to
help our semantic parsing model learning. For the challenge
of diverse question expressions of the same logical form, the
paraphrase data containing pairs of sentences’ equivalent se-
mantics are used in our model. Using the supervised signal
in paraphrase data is helpful for improving the generalization
ability of the semantic parsing model.

In order to use these supervised information from other
tasks to enhance the original task, multi-task learning is one
of the choices which has been successfully used in vari-
ous tasks [Guo et al., 2018; Lin et al, 2018]. In this
work, we design a multi-task learning method which inte-
grate question type and entity mention tag information into
the question semantic parsing model. Our semantic parsing
model shares an encoder layer with auxiliary tasks (ques-
tion type classification and entity mention detection) and
uses different decoders for different tasks. Through this
method, our model learns an encoder from three different
kinds of supervised information. With the paraphrase data,
we propose a weakly supervised learning method to en-
hance our multi-task learning model. We assume that our
model should give the same output for each pair of sen-
tences in the paraphrase data, such as “When was Alexander
born?” and “The birthday of Alexander” have the same logi-
cal form:“Ax.people.person.date_of birth(Alexander, x)”.
Based on this assumption, we propose a weakly supervised
learning method, which incorporates a consistency loss.

To train a semantic parsing model, training data containing
a set of <sentence, logical form> pairs which typically re-
quire experts to annotate is important. However, it is hard to
collect enough data for training a semantic parser due to the
cost of annotation. Existing datasets including complex ques-
tions are relatively small, such as Free917 [Cai and Yates,
2013], QALD-6 [Unger ef al., 2016] and LC-QuaD [Trivedi
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Task Natural Sentence

Supervised Label

When was Obama born

Az.people.person.date_of _birth(Obama, x)

Semantic Parsing
When was Obama’s daughter born

AzJy.people.person.children(Obama, y) and
people.person.date_of birth(y, )

Classification Who is the director of Inception

Single-relation

Who is the son of director of Tom Hanks

Multi-hop

Mention Detection When was Obama’s daughter born

O O B O O

Which film is directed by Tom Hanks

O O O O O B 1

How long is the flight from Singapore to Syndney

Distance of flight from Singapore to Syndney

Paraphrase When was Alexander born

The birthday of Alexander

Table 1: Examples for different tasks. Semantic Parsing is a corpus containing sentence and logical form pairs. Classification is a corpus
which can be used in question classification. Mention Detection is a corpus which contains a tag for each word in the sentences, “B” represents
beginning,“T” represents inside, “O” represents outside. Paraphrase is a corpus which contains pairs of sentences with equivalence semantics

et al., 2017]. In ComplexWebQuestions [Talmor and Berant,
2018], a relatively larger dataset containing 34,689 examples,
there are limited 4 types of questions in it. Therefore, con-
structing a large scale and more complex labeled dataset for
semantic parsing is considerably meaningful. In this paper we
construct a large scale semantic parsing dataset which con-
tains more than 50,000 <question, logical form> pairs over
9 types of questions.

The main contributions of this paper are: 1) We design
a multi-task learning method, which integrates the question
type and entity mention tag information into the semantic
parser. 2) We propose a weakly supervised learning method
to enhance our multi-task learning model using paraphrase
data. 3) We construct a relatively large scale semantic pars-
ing dataset to advance the semantic parsing research. We will
release the dataset together with our code!. 4) Experiments
on two semantic parsing datasets show the effectiveness and
robustness of our proposed method.

2 Model

First, we introduce the baseline model and then we show our
multi-task architecture. Finally, we introduce our weakly su-
pervised multi-task learning for semantic parsing.

2.1 Baseline Model

The baseline model is fed with the <question,logical form>
pairs (Q, L). The question Q = [z1,%2...7)q|],7; € Vg is
used to generate logical form L = [y1,ya, ...y 1], % € Vi.
We define V as the source vocabulary and V; as the target
vocabulary. Our baseline model aims to estimating P(L|Q),
and the conditional probability can be formulated as follows:

|L]
p(LIQ) = [[ p(welye-1, ... 11, Q) (D

t=1
The model is based on the sequence-to-sequence model
with a bidirectional GRU-RNN [Cho ef al., 2014] layer as
encoder and a unidirectional GRU-RNN layer as decoder
in our baseline model, which has been applied in seman-
tic parsing tasks in [Dong and Lapata, 2016; Rabinovich et
al., 2017]. Our model adopts the attention mechanism[Bah-
danau er al., 2014] and copy mechanism in [Gu et al., 2016;
See et al., 2017] to deal with out-of-vocabulary (OOV) words.
We define h = [hy, ha...h)q|] as the hidden states of encoder

"https://github.com/shaoboly/wsmt]
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and s = [s1, 82...5|] as the hidden states of decoder. And
let ¢; be the context vector computed from a weighted com-
bination of encoder hidden states h, which is same as ba-
sic sequence-to-sequence model in [Dong and Lapata, 2016;
See et al., 2017]. The probability distribution Pgt over the
target vocabulary V; can be computed as follows:

Pylye) = sfm(Wp(Wlsi; ci] +b) +by) 2

where W, W, b, b, are trainable parameters, sfm(.) is the
softmax function.

Specially, to tackle out-of-vocabulary words, we incorpo-
rate the same copy mechanism as [Gu et al., 2016; See et al.,
2017] in our decoder. Attention score a; is used as probabil-
ity distribution of copy mechanism from input question. The
final distribution at time step ¢ is computed as:

ge =0 (W*[cy; 8¢] + b)
Pl(y) =(1 = go)Piy) + g >, a 3)

1T =Yt
where W*, b* are trainable parameters, ¢ is a non-linear func-
tion, the gate g, is used to decide whether y; should be copied
from the input question or generated from the target vocabu-
lary V.
Finally, we compute the overall loss function in all steps:

!ﬁi‘o *ZOQPJE(%)
L]

2.2 Multi-task Learning Architecture

In the basic sequence-to-sequence model, the logical form is
generated according to the question context and the model is
only trained with <@, L> pairs. However, the <@, L> pairs
are hard to annotate. To overcome the limitations of train-
ing data, we incorporate multi-task learning architecture to
improve the performance of our model with supervised infor-
mation of other tasks.

In this work, we leverage question type classification and
entity mention detection as auxiliary tasks to boost our se-
mantic parsing model. We define T’ € {1,2,...,n} to denote
the index of question types and M = {my, ..., m|q|}, where
m; € {B, 1,0}, to denote the mention tags. The multi-task
learning model is aimed at estimating the conditional prob-
ability p(L, T, M|Q). We decompose p(L,T, M|Q) into 3
distributions, p(L|Q), p(T|Q), and p(M|Q).

We have introduced p(L|Q@) in previous section. In this
section, we will introduce the two auxiliary tasks, which are
aimed at estimating p(7T'|@) and p(M|Q).

4)

1088495 =
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Question Classification

The task of question classification is to classify the question
to n types 1" such as Multi-hop, Multi-constraint .etc. It can
be formulated as a conditional probability p(7'|Q). To es-
timate p(7'|Q), We share the encoder with baseline method
and add a classification layer. The input of classification layer
is the final hidden state h|g of shared encoder and the out-
put is question type distribution Pyyp.. At training step, the
probability distribution P, over n question types and the
cross-entropy loss of classification loss, can be calculated as
follows:

Ptype = sfm(Wsh|Q| + bs)

loss. = — Z[T = d]log Pyype(T) )

d=1

where W, b, are trainable parameters, P,p.(7") denotes
the conditional probability p(T'|Q), sfm(.) denotes the soft-
max function.

Mention Detection
The task of entity mention detection is to detect the mention
words in the question, which is important to help mention
words generation in logical form. In our baseline model, the
mention words mainly rely on a copy mechanism. However,
it is difficult to copy the mention words for complex ques-
tions which contain multiple mention spans. We leverage the
mention tags to boost the copy mechanism in our model.
The probability of mention tags generation can be factor-
ized as: 0l

p(M|Q) = Hp mi|Q) (6)

To estimate p(M|Q) We add an RNN layer with GRU unit.
The inputs of it are the hidden vectors i of encoder, and
outputs are “B”,“T”,“O” tags corresponding to each word in
question. The hidden state h/ and mention tags distribution
of ith step in the RNN layer can be formulated as:

W =GRU (i, i)

@)
Pty =sfm(Wyh + by)

where w,,,b,,, are trainable parameters, sfm(.) is the softmax
function, and P, o 1s the distribution of tags of the ith token
and P/, (m;) denotes p(m;|Q) in Eq. 6.

Then the loss function of mention detection task can be
calculated as follows:

Z‘Q‘ _log ta,q( )
Q|

where |Q)] is the length of input question.

®)

l08s1qg =

Loss Function

The multi-task model is trained with semantic parsing, ques-
tion classification and semantic parsing jointly. The overall
loss function is weighted sum of the three loss as:

1058m11 = 1055525 + 0l05Stype + BlOSS1ag 9

where «, 8 € [0, 1] are hyper-parameters, which are used to
balance the weight of three tasks.
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p(LIQY).

2.3 Weakly Supervised Multi-task Learning

In this section, we present our weakly supervised method
using the paraphrase data to boost the multi-task learning
model. Each instance of paraphrased data contains a pair

of questions <@Q',Q?> which are meaning-equivalent. In
our assumption, the question Q? should have the same log-
ical form and question type with Q!, since Q? is anno-
tated by the root question Q'. We use p(L,T, M'|Q")
and p(L,T, M?|Q?) to represent the conditional probabili-
ties given questions Q' and Q? respectively. Our goal is to
minimize the relative distances between p(L, T, M*'|Q") and

p(L, T, M?|Q?) and ignore the influence of p(M|Q). We use

Kullback-Leibler divergence [Kullback, 1997] to measure the
distance and only use p(L|Q") and p(T'|Q") to compute its di-
vergence, which can be formulated as:
Dxr(p(L, T, M*|Q")||p(L, T, M*'|Q%))
oD (p(L|Q")[Ip(LIQ%)) + Dxr(p(TIQ")||p(T|Q%))

We first introduce the computation of
Drr(p(LIQY)||p(L|Q?)). Given a question Q! and its
annotated paraphrase question @, we formulated the
computation of the KL divergence:

Dicr (p(L1QY)|Ip(LIQ?))
= 3 pZIQYog(p(LIQY) /p(LIQ%) (D

LeS(L)

(10)

where S(L) represents the set of all possible logical forms
with the input question Q!. Since 7 is annotated by Q*,

we can consider p(L|Q') as constant target distribution and
compute the partial derivative as follows:

9Dk (p(LIQ)IP(L]Q?))

90
_ 1, log(p(L|Q?))
= - Lezs(:L)p(LlQ I (12)

_ B log(p(L|Q*))
= Lp(L|QY) 90

where 6 represent the parameters in our model and the expec-

tation —Er,(1Q1) can be approximated by samples from
Thus minimizing the KL divergence is equal to
maximize the log-likehood on samples from the decoding re-
sult from Q! with the input of Q2.

In each training step, we first generate the candidates by
our model with the input samples of @'. Then we make Q>
with each corresponding candidate L’ as a pseudo pair. We
optimize our model using these pseudo pairs same as training
data. We optimize the parameters of our model based on Eq. 4
and compute the consistency loss as losspam

For questlon type classification, we compute distributions
P} . and P2 over n types for questions Q' and Q. Then
we compute the KL divergence D(p(T|Q')||p(T|Q?)) as

loss loss?{ﬁ‘é which can be calculated as follows:

1 Pl .(d)
lossiuhe, = — 3 log Py (d) log(m3%—0)  (13)
e = 5 2108 Plpeld) sl 25
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Finally, joint with the loss of multi-task learning [0ss,,;,
we achieve the loss for our weakly supervised multi-task
learning model:

l type
10885 = 0SS + Allosspm.a + )\glossp?{l’;a (14)

where A1, A2 € [0, 1] are hyper-parameters, which are used
to balance the weight of the multi-task learning and weakly

supervised learning in our model.

3 Dataset

3.1 Dataset Construction

In this paper, we construct a Large Scale semantic Parsing
Dataset(LSParD) based on a knowledge base (KB), we use
Freebase for our dataset. It contains a set of nodes and edges,
which are always represented by triple {s, p, 0}. Each triple
denotes two nodes, a subject entity s, an object entity o and
the directed edge p between them as a predicate. A kind of
special KB node called CVT in KB, which is a compound
type, is used to denote events.

In our LSParD, some primary functions such as Argmax,
Argmin,Argmore, Argless, Max, Min are defined to denote ba-
sic functional natural language expressions, such as “larger
than”, “the longest”, and so on. Then we collect our dataset
by crowd sourcing which contains five steps. First, we col-
lect the connected triples which has one same node on the
knowledge graph. Second, we annotate a question for each
triple. Third, we automatically generate complex questions
for the connected triples through the simple question of each
triple using a template. Fourth, the workers paraphrase the
questions generated from template. Finally, 3 other workers
verify the quality of paraphrasing.

[ Type | Example ]
Single-Relation | when was Steve Jobs born
CVT who played deputy Ferguson in Project Viper
Multi-Hop which film was written by the director of
Wonder
Multi- what movie was produced by Milan Cheylov
Constraint that Samantha Follows acted in

Multi-Choice which was invented by Steve Jobs, Alt code

or iPhone

Yes/No was the iPod invented by Steve Jobs
Superlative what is the longest road in the world
Aggregation how many children does Bill Gates have
Comparison which country has more than 100 million

people

Table 2: Examples for each question type in our dataset

We roughly divide questions in our dataset into 9 cate-
gories. “Single-Relation” are questions which ask for a single
relation which consist of one entity and one predicate. “CVT”
are questions which involve a node with a compound type
and connected with multiple entities through multiple pred-
icates. “Multi-Hop” are questions that can be transformed
into a path which contains multiple entities linked by pred-
icates. “Multi-Constraint” are questions which ask for the
answer with multiple constraints by entities and predicates.
“Multi-Choice” are questions which involve a set of candi-
date answers to choose from. “Yes/No” are questions that ask
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about the existence of a relation and expect a Yes or No an-
swer. “Superlative” denotes an operation on a subgraph con-
taining a set of entities which belong to a special type and are
linked by the same comparable predicate. The operation can
be ArgMax, ArgMin, Max or Min. “Aggregation” de-
notes the questions asked about the number of all connected
entities linked to the giving entity with the same predicate.
“Comparison” are questions about a set of entities linked with
the same predicate to the same object, in which the predicate
is comparable. These questions ask for the entities which sat-
isfy more or less ( denoted by ArgMore or ArgLess in the
logical forms) than a given threshold.

3.2 Dataset Statistic

Questions in our dataset are annotated with A-Calculus. Ta-
ble 3 shows statistics of our dataset. From the table, we
observe that our dataset contains 51,164 < question, logi-
cal form > pairs and 9 types of questions which is a large
scale and complex semantic parsing dataset. Existing large
scale semantic parsing datasets, LC-QuAD [Trivedi et al.,
2017] has 5,000 questions and it is annotated with SPARQL
queries based on DBpedia. ComplexWebQuestion(CWQ)
contains 34,689 examples and 4 types of complex questions
with SPARQL queries based on Freebase. WikiSQL [Zhong
et al., 2017] has 80,654 questions and it is annotated with
SQL which can be executed on tables. This work mainly
focuses on constructing a semantic parsing dataset based on
knowledge graph such as Freebase and DBpedia. Our dataset
is the largest in this type of datasets as far as we know. We
will publish this dataset with more detailed instructions.

Type Question | LFP | Entity
Single-Relation 28,776 621 13,367
CVT 5,115 437 4,045
Multi-Hop 7,452 689 1,950
Multi-Constraint 2,601 235 2,962
Multi-Choice 1,344 448 2,376
Yes/No 2,688 448 2,387
Superlative 1,013 179 326

Aggregation 1,818 256 922

Comparison 357 48 219

Statistic 51,164 3,361 | 23,144

Table 3: Statistics of our dataset. “Question” represents the number
of questions. “LFP” denotes the number of logical form patterns.
“Entity” represents the number of entities in the dataset

4 Experiment

We evaluate our method on two datasets, our LSParD and
ComplexWebQuestion (CWQ).

4.1 Experimental Setup

Preprocessing

For weakly supervised learning, we use WikiAnswers para-
phrase corpus [Fader et al., 2013] in our model. The dataset
contains 18M of question-paraphrase pairs and 2.4M distinct
questions. We build a search engine using BM25 to select the
most relevant 220,000 question pairs with the questions in the
semantic parsing corpus and use these paraphrase data as our
weakly supervised learning data.
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For ComplexWebQuestion (CWQ), since the dataset only
provides the ID of entity without its name and mention words
in the question. We find the entity names in CWQ from
Freebase. Some entity names are not contained in ques-
tions(19.7% of the dataset), since questions have been para-
phrased according to author of the dataset. We will release
the preprocessed dataset together with our code and LSParD.

Configuration

We use Glove word embeddings [Pennington et al., 2014] as
our pre-trained word embeddings. We set the dropout rate to
0.5. The dimension of all hidden vectors and word embed-
ding is 300. Word vocabulary and embedding are not shared
between encoder and decoder. In all our experiment, « and /3
are set to 0.5, A1 and \, are set to 0.1.

We compare several previous works in our experi-
ment, including SEQ2SEQ and SEQ2TREE [Dong and
Lapata, 2016], PointerGenerator [See et al., 2017] and
Coarse2fine [Dong and Lapata, 2018]. We directly train their
model on LSParD and CWQ with their released code. In
baseline methods SEQ2SEQ and SEQ2TREE, we use the
same method to pre-process the training data as they do to
replace the entities as a placeholder in the logical forms and
questions. For evaluation, we use the accuracy of exactly
match to evaluate the performance of our model.

4.2 Experimental Results

Method LSParD|CWQ
SEQ2SEQ [Dong and Lapata, 2016] 335 437
SEQ2TREE [Dong and Lapata, 2016] 33.1 | 44.1
Coarse2fine [Dong and Lapata, 2018] 52.3 | 485
PointerGenerator [See et al., 20171 512 | 479
Baseline 52.1 | 49.1
Multi-Task-Learning (MTL) 54.1 | 51.0
w/o Mention Detection 533 | 49.8
w/o Question Classification 53.6 | 50.3
Weakly-Supervised MTL (WS-MTL)| 56.8 | 52.7
w/o Mention Detection 55.1 | 51.7
w/o Question Classification 547 | 52.2
Table 4: The accuracy of our methods with previous work on

LSParD and CWQ

Table 4 shows the comparisons of the proposed method
with the state-of-the-art methods and variants of the pro-
posed model. “Baseline” represents the single task model
based on the basic architecture. “MTL” denotes the multi-
task learning method we propose in this paper. “WS-MTL”
is the weakly supervised multi-task learning method. From
the results, we observe that the method “WS-MTL” proposed
in this paper achieves the best performance. Compared to
the state-of-the-art method “PointerGenerator”, our model
achieves around 11% relative improvement on the LSParD
and around 10% relative improvement on the CWQ, which
illustrates the effectiveness and robustness of the proposed
model. Comparing the results of “MTL” and “Baseline”, we
observe that “MTL” achieves improvement on both datasets,
which demonstrates that the question type and mention tag
information used in our “MTL” are beneficial to our semantic
parsing. Comparing the results “MTL” and “WS-MTL”, we
see that the weakly supervised learning method we used to
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enhance the “MTL” achieves further improvement. To eval-
uate the influence of each auxiliary task, we conduct an ab-
lation test, such as “MTL” without “Mention Detection” or
“Question Classification”. The bottom of Table 4 lists the re-
sults of ablation test. The results show that each auxiliary task
is helpful to improve the performance of our semantic parsing
task in both “MTL” and “WS-MTL".

4.3 Auxiliary Task Results

We also analyze the performance on auxiliary tasks, and find
that the auxiliary tasks also improve compared with training
the task itself alone. And the weakly supervised learning can
also boost performance.

Question Classification

Table 5 shows the performance of question type classification
on LSParD and CWQ. “BiLSTM-C” denotes the method that
only use the shared encoder and classification layer in our
model. From the results, we observe that the “MTL"” achieves
better performance than “BiLSTM-C”. We believe that the
supervised information of semantic parsing and mention tag
are also beneficial to question type classification. Further-
more, we observe that “WS-MTL” achieves the best perfor-
mance on question classification which illustrates weakly su-
pervised learning not only improves the performance of se-
mantic parsing, but also boost question classification. We
compare the results between LSParD and CWQ for the same
model. We see that the accuracy on LSParD is lower than
CWQ, the reason is LSParD has more types of questions than
CWAQ. The results show that our model is more effective when
the task is more complicated.

LSParD(ACC) | CWQ(ACC)
BiLSTM-C 78.6 86.4
MTL 82.5 87.1
WS-MTL 84.8 89.1

Table 5: Performance of question type classification

Mention Detection

Table 6 shows the performance of mention detection task on
LSParD and CWD. “BiLSTM-D” denotes the methods that
only use the shared encoder and mention detection layer in
our model. From the results of “BiLSTM-D” and “MTL”, we
observe that semantic parsing and question type information
is helpful in improving the performance of mention detection.
Comparing the results of “MTL” and “WS-MTL”, it shows
the same trend with question classification task which illus-
trates the robustness of weakly supervised learning method.

LSParD(ACC) | CWQ(ACC)
BiLSTM-D 774 76.5
MTL 79.6 719
WS-MTL 80.7 78.6

Table 6: Performance of mention detection

4.4 Discussion and Analysis

We conduct an experiment to evaluate the consistence of log-
ical forms generated from our model for paraphrase data. We
use BLEU-4 [Papineni ef al., 2002] as evaluation metric to
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measure the consistence of our model. We randomly select
20,000 pairs of paraphrase dataset as test set for consistence
evaluation. Table 7 shows the performance of our model. The
results show that our model achieves significant improvement
on BLEU-4 score which illustrates our model can generate
more similar logical forms for question pairs in paraphrase
data. Comparing the results of “Baseline” and “MTL”, we
find that “MTL” weakly improves performance. While our
“WS-MTL” method achieves around 43.6% relative improve-
ment over BLEU-4, the results demonstrates the ability of our
model to handle various expression of questions.

LSParD(BLEU-4) | CWQ(BLEU-4)
Baseline 61.2 70.1
MTL 63.9 71.7
WS-MTL 87.9 89.6

Table 7: Performance of model robustness

As show in Figure 1, we train the models with different
sizes of training data. Data sizes ranges from 20% to 100%.
We find that our method achieves improvement among vari-
ous sizes of training data. Furthermore, our method achieves
more improvements for low training data. It demonstrates
that our method effectively uses supervised information of
other tasks to help semantic parsing.

60 Performance on LSParD Performance on CWQ
55 | 55
;\3 50 50
> 45 45
Q
<
g 40 40
Z 35 -~ Baseline 35 | —Baseline
30 MTL 30 MTL
25 WS-MTL|| 25 WS-MTL

2 20 40 60 80 100 20 40 60 80 100

Traing Data Size (%) Traing Data Size (%)

Figure 1: Performance of various amounts of training data in
LSParD and CWQ

We further analyze the performance of each type of ques-
tions on LSParD in Table 8. We replace the entity and pred-
icate in the logical form to measure its Pattern accuracy.
The results show that the question type information helps the
model for logical form pattern generation, especially for the
types which contain small scale training data, such as Su-
perlative, Aggregation, and Comparative. Comparing the re-
sults of entity generation, we find that our model with men-
tion supervised information improves the performance of en-
tity generation effectively. Finally the results of the whole
logical form generation show that our model achieves im-
provements for all types of questions which illustrates the ef-
fectiveness and robustness of the proposed method.

5 Related Work

Semantic parsing, as an important task of natural language
understanding, has been paid a lot of attention. Many se-
mantic parsers [Kwiatkowski et al., 2011; Berant ef al.,
2013; Dong and Lapata, 2018] are learned based on labeled
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[ [ Pattern | Entity | LF ]

Question Type [Our | B [Our| B [Our| B

Single-Relation | 99.3 | 98.5 | 98.3 | 98.1 | 83.4 | 82.1
CVT 92.5]91.2 784|758 ]40.2 | 38.2
Multi-Hop 9521948 193.3|91.3|74.0 | 68.7
Multi-Constraint | 95.4 | 94.1 | 74.5 | 71.7 | 47.8 | 42.1
Multi-Choice 79.6 | 79.8 | 61.2 | 51.8 | 31.5 | 24.2
Yes/No 85.7(83.7] 684 | 64.8 | 46.6 | 43.9
Superlative 78.2169.7|77.7|77.6|68.6 | 60.1
Aggregation 83.5]74.4 | 86.1 | 83.7 | 51.5 | 38.5
Comparative 82.7178.6 908 | 85.7|71.4|59.2
Overall 91.1 [ 89.2 | 82.5]79.7 | 56.8 | 52.1

Table 8: Accuracy for different types of questions on different as-
pects. “Pattern” represents the accuracy of logical form patterns.
“Entity” represents the accuracy of entity prediction. “LF” denotes
the accuracy of complete logical form generation. “Our” refers to
our model “WS-MTL” and “B” refers to the “baseline” model

<sentence, logical form> pairs which are hard to obtain. To
address this problem, multi-task [Peng et al., 2017],transfer
learning [Fan et al., 20171, paraphrasing [Su and Yan, 2017]
and weakly supervision approaches [Goldman et al., 2018;
Cheng and Lapata, 2018] are proposed to train semantic
parsers. In this work, we follow the multi-task learning mech-
anism. Multi-task learning has been used in various natu-
ral language processing tasks, such as text classification [Liu
et al., 2017], reading comprehension [Wang et al., 2018]
and summarization [Guo et al., 2018]. [Guo et al., 2018;
Wang et al., 2018] use shared layers to incorporate auxiliary
tasks. [Liu ef al., 2017] use adversarial learning to find com-
mon information from different tasks. We propose a weakly
supervised multi-task learning model for semantic parsing.

6 Conclusion

In this paper, we propose a weakly supervised multi-task
learning method for semantic parsing. We design a multi-task
architecture which incorporates question type and mention
tag information into the semantic parser. To further improve
model performance and consistence, we propose a weakly su-
pervised method to enhance our multi-task learning model.
The experiments on two datasets show that our multi-task
learning architecture significantly improves performance of
baseline method. Furthermore, the weakly supervised learn-
ing mechanism we propose effectively improves the perfor-
mance of the multi-task learning model.
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