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Abstract
Despite widespread adoption, recommender sys-
tems remain mostly black boxes. Recently, pro-
viding explanations about why items are recom-
mended has attracted increasing attention due to
its capability to enhance user trust and satisfac-
tion. In this paper, we propose a co-attentive multi-
task learning model for explainable recommenda-
tion. Our model improves both prediction accu-
racy and explainability of recommendation by fully
exploiting the correlations between the recommen-
dation task and the explanation task. In particular,
we design an encoder-selector-decoder architecture
inspired by human’s information-processing model
in cognitive psychology. We also propose a hier-
archical co-attentive selector to effectively model
the cross knowledge transferred for both tasks. Our
model not only enhances prediction accuracy of the
recommendation task, but also generates linguis-
tic explanations that are fluent, useful, and highly
personalized. Experiments on three public datasets
demonstrate the effectiveness of our model.

1 Introduction
Personalized recommendation has become a major technique
for helping users handle huge amounts of online content. To
improve user experience, it is essential that the recommenda-
tion model accurately predicts users’ personal preferences for
items. Except for accuracy, there is a growing interest in ex-
plainability [Alvarez-Melis and Jaakkola, 2018]. Evidence
has shown that explanations about why the items are recom-
mended can increase user trust, improve satisfaction, and per-
suade the users to buy or try an item [Rago et al., 2018].

The recent attention on explainability has lead to the de-
velopment of a series of explainable recommendation models.
A fundamental question explainable recommendation aims to
answer is how we balance accuracy and explainability. Most
existing methods consider the two goals in separate steps or
only focus on one of the goals, which limits their effective-
ness. In particular, let us consider the two most widely used
frameworks: post-hoc and embedded.
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Figure 1: Explanations provided by different methods: (a) post-
hoc methods [Sharma and Cosley, 2013; Peake and Wang, 2018];
(b) a feature-level embedded method [Zhang et al., 2014]; (c) a
sentence/review-level embedded method [Chen et al., 2018]; (d) a
joint model [Li et al., 2017]; and (e) our model. Underlined words
are related with user interest. Our model generates informative and
personalized explanations that are relevant to the item.

Post-hoc methods explain a black-box model after it is
trained [Vig et al., 2009; Sharma and Cosley, 2013; Peake
and Wang, 2018]. They consider accuracy and explainability
in separate steps and provide explanations based on the model
outputs. Typically, the rich information embedded inside the
recommendation models are ignored and the explanations are
selected from a set of pre-defined templates. As shown in
Fig. 1(a), the templates are often readable and persuasive.
However, the explanations may not reflect the model’s actual
reasoning and the diversity of the explanations are limited.

Embedded methods integrate the explanation process into
the construction of the recommendation model [McAuley
and Leskovec, 2013; Zhang et al., 2014; He et al., 2015;
Chen et al., 2018; Wang et al., 2018a]. These methods focus
on recommendation accuracy. Their explanations consist of
features or sentences that are important for improving accu-
racy (Fig. 1(b)(c)). Since explainability is not included in the
optimization goal, it is difficult to guarantee the quality of the
explanations, e.g., consistency [Wang et al., 2018b]. More-
over, the embedded methods are retrieval-based (i.e., select-
ing from original dataset). They may fail to provide a highly
personalized explanation when data is sparse and may suffer
from legal issues (e.g., copyright) in certain scenarios.

The purpose of this paper is to illustrate how to effectively
optimize accuracy and explainability in a joint and unified
framework. The key idea is that fully exploiting the corre-
lations between the recommendation task and the explana-
tion task potentially enables both tasks to be better off than
when they are considered separately. While the idea seems



promising, achieving this objective is challenging. A simple
multi-task learning framework that only shares latent repre-
sentations such as user and item embeddings between the two
tasks cannot achieve desirable results. As shown in Fig. 1(d),
the generated explanations are usually quite general, i.e., they
do not contain specific information about key features of the
item. This is because 1) the shared representations are not
explainable and fail to provide explicit constraints on the ex-
planations and 2) user and item embeddings do not contain
sufficient information about deep user-item interactions.

To address the aforementioned issues, we propose a Co-
Attentive Multi-task Learning (CAML)1 model for explain-
able recommendation, which enhances both accuracy and ex-
plainability of explainable recommendation by tightly cou-
pling the recommendation task and the explanation task.

The major contributions of this paper are:
First, we design an encoder-selector-decoder architec-

ture for multi-task learning. Our architecture design is in-
spired by models in cognitive psychology. Cognitive scien-
tists have shown that a human’s cognitive process consists
of three major sub-processes [Lang, 2000]. The three sub-
processes correspond to our encoder, selector, and decoder.
In explainable recommendation, the decoder is responsible
for deciding the predicted rating (recommendation task) and
generating the explanations (explanation task). The selector
serves as the transferred cross knowledge for both tasks. The
architecture tightly couples the two tasks in a natural way.

Second, we propose a hierarchical co-attentive selector
to effectively control the cross knowledge transfer for both
tasks. The selector models deep level interactions between
the users and items. In particular, it identifies reviews and
concepts (cross knowledge) that are important for the user-
item pair based on co-attention. Compared with traditional
methods such as REINFORCE [Williams, 1992], our model
does not suffer from slow convergence and high variance be-
cause we use hierarchical multi-pointer networks [Vinyals et
al., 2015] for review and concept selection.

Finally, extensive experiments demonstrate that our
method improves both explainability and accuracy. As
shown in Fig. 1(e), our method is able to generate fluent
explanations that are informative, highly personalized, and
relevant with the item. Numerical experiments demonstrate
that the explanations of CAML increases BLEU scores by
14.6% to 35.9%. Human evaluation shows that our explana-
tions are more fluent and much more useful compared with
the state-of-art generative model (explainability). Moreover,
CAML consistently improves recommendation accuracy on
three public datasets compared with 7 baselines (accuracy).

In the rest of the paper, we first introduce the problem def-
inition and our model. We then describe the experiments and
conclusion. The related work section is omitted because
most existing works have been discussed in the introduction.

2 Problem Formulation
We formulate our problem as follows.
Input. The input of our model consists of the user set U , the
item set V , the reviews, and the concepts in the reviews:

1Source code: https://github.com/3878anonymous/CAML.

• Each user is represented by its ID u ∈ U and each item is
denoted by the item ID v ∈ V .
• The reviews of a user u are (Du,1, ...,Du,ld), where ld

denotes the maximum number of reviews. Each review
Du,i is denoted by a set of words in the review. Similarly,
(Dv,1, ...,Dv,ld) represents the reviews of item v.

• The concepts are a subset of words that correspond to im-
portant explicit features mentioned in the review. For ex-
ample, the review “This is a great little comedy with a
catchy song” contains two concepts: comedy and song.
We derive the concepts by utilizing Microsoft Concept
Graph2 [Wu et al., 2012; Wang et al., 2015], a widely
used knowledge graph with about 18 million concepts or
instances. We map the n-grams in the reviews to concepts
or instances in the concept graph and filter concepts that
are rarely used or not informative.

Output. Given a user-item pair (u, v), our model predicts:
• The rating r that reflects how much u likes v.
• The linguistic explanation Y = (y1, y2, ..., yT ) that illus-

trates why user u likes or does not like item v. Here yk
denotes the k-th word in the explanation. During training,
ground truth explanations can be set to reviews or tips the
users write for the corresponding item [Li et al., 2017].

3 Model Description
In this section, we introduce CAML, a Co-Attentive Multi-
task Learning model for explainable recommendation. Our
model improves both prediction accuracy and explainability
by fully exploiting the correlations between the recommen-
dation task and explanation task. To achieve these goals, we
design an encoder-selector-decoder architecture. As shown
in Fig. 2, our model consists of three components, each
corresponds to one major sub-process of the information-
processing model in cognitive psychology [Lang, 2000].
• In the encoder, we embed the words, reviews, and the im-

plicit factors of users and items. The encoder corresponds
to the sub-process of encoding in information processing.

• The multi-pointer co-attention selector identifies reviews
and concepts that are important for both users and items
by leveraging hierarchical multi-pointer co-attention. The
identified concepts serve as the cross knowledge for the
two tasks. This component corresponds to the storage
sub-process in information processing, which distinguishes
important pieces of encoded information and stores them
properly through associations and links (i.e., networks).

• The multi-task decoder is responsible for predicting the
ratings and generating the explanations based on the key
concepts extracted by the selector. In information process-
ing, this corresponds to the retrieval sub-process, which
reactivates important information for decision making.
Next, we will introduce each component and how we

jointly optimize them in an end-to-end framework.

3.1 Encoder
Word encoder. We use a look up layer to transform a word
ID into a word embedding ω ∈ Rlw . Here, lw is the dimen-
sionality of word representations.

2https://concept.research.microsoft.com/



Figure 2: Framework of the proposed model for explainable recommendation.

Review encoder. We calculate an initial review embedding
by following [Tay et al., 2018]. Given review Du,i, the
corresponding review embedding du,i can be calculated by
du,i =

∑
ω∈Du,i

ω. Summing up the embeddings of related
words to derive an initial review embedding balances both
effectiveness and efficiency.
User/Item implicit factor encoder. Explicit factors such as
reviews may not contain all information about a user or an
item. To complement explicit factors, we introduce implicit
user or item factors by following [Zhang et al., 2014]. Specif-
ically, we use a look up layer to transform user u (or item v)
into implicit representation hu ∈ Rlu (or hv ∈ Rlv ).

3.2 Multi-Pointer Co-Attention Selector
We model the cross knowledge transferred for the two tasks
by identifying (selecting) reviews and concepts that are im-
portant for user-item pairs. Our method is based on the multi-
pointer co-attention networks [Tay et al., 2018], which 1) are
effective in modeling a deeper level of pairwise interactions
and 2) have better convergence properties compared with al-
ternatives such as REINFORCE [Williams, 1992]. We first
show how we extend the networks to hierarchically select re-
views and then concepts. Next, we discuss how we support
selection and aggregation of multiple reviews and concepts.
Review-level co-attention pointer. Given user review
embeddings du,1, ..., du,ld and item review embeddings
dv,1, ..., dv,ld , we first calculate co-attention weight matrix
Φ ∈ Rld×ld among user-item review pairs. Specifically, the
(i, j)-th entry of Φ is computed by:

φi,j = F (du,i)TWdF (dv,j) (1)

Here, Wd ∈ Rlw×lw is the weight matrix and F is a feed-
forward neural network with lF layers.

Max pooling over the co-attention matrix selects reviews
with the maximum correlations with all reviews:

ai = max
j=1,...,ld

φi,j and bj = max
i=1,...,ld

φi,j (2)

To turn the unnormalized vectors a = (a1, ..., ald) and
b = (b1, ..., bld) into a probability distribution, the most com-
monly used function is softmax. However, selecting reviews

(i.e., applying the arg max function) from the softmax distri-
bution makes the model non-differentiable. To address this
issue, the Straight-Through Gumbel-Softmax function [Jang
et al., 2017] is used for attention learning:

qi =
exp(ai+giτ )∑nm

j=1 exp(
aj+gi
τ )

(3)

where gi is the Gumbel noise, τ is the temperature parameter
which controls the smoothness of the vector q. If τ is close
to zero, q becomes close to a one-hot vector. In the forward
pass, arg max is leveraged to gain a pointer z from q:

zi =

{
1, i = arg maxj(qj),
0, otherwise (4)

We denote this function as Gumbel(a) = z.
In the backward pass, the function approximates the gra-

dients of z by using the gradients of q to ensure end-to-
end model training [Jang et al., 2017]. The review-level co-
attentional user embedding d′u and item embedding d′v are:

d′u = (Gumbel(a))TDu and d′v = (Gumbel(b))TDv (5)

Here, the i-th row of Du ∈ Rld×lw (or Dv) is dT
u,i (or dT

v,i).
Concept-level co-attention pointer. Suppose that the se-
lected user review contains concepts cu,1, ..., cu,lc . Here cu,i
denotes the word embedding of the i-th selected concept. The
concepts of the selected item review are cv,1, ..., cv,lc . The
concept co-attention matrix Ψ ∈ Rlc×lc is calculated by

ψi,j = F (cu,i)TWcF (cv,j) (6)

where Wc ∈ Rlw×lw is the weight matrix. Next, we calculate
the weights of the concepts by aggregating Ψ. We investigate
different pooling strategies and find mean pooling to perform
the best. Thus, mean pooling is used to calculate the weights
of the concepts α and β:

αi =
1

lc

∑
j=1,...,lc

ψi,j and βj =
1

lc

∑
i=1,...,lc

ψi,j (7)



Here, αi is the i-th entry of α and βj is the j-th entry of β.
The concept-level co-attentional embeddings are:

c′u = (Gumbel(α))TCu and c′v = (Gumbel(β))TCv (8)

where the i-th row of Cu ∈ Rlc×lw (or Cv) is cT
u,i (or cT

v,i).
Multi-pointer aggregation. Since a user may consider mul-
tiple reviews and concepts when s/he provides ratings or
reviews, we need to support selection and aggregation of
multiple pointers. Consider the co-attentional user embed-
ding eu = [d′u; c′u] that combines review-level and concept-
level user embedding. In the multi-pointer setting, we
run our hierarchical co-attention pointer selector multiple
times with different Gumbel noises to get multiple samples:
{e(1)
u , ..., e(np)

u }. Similarly, we obtain a set of samples for the
co-attentional item embedding: {e(1)

v , ..., e(np)
v }. We then use

a non-linear layer to aggregate multiple samples:

ēu = σ(Wp[e(1)
u , ..., e(np)

u ] + bp) (9)

ēv = σ(Wp[e(1)
v , ..., e(np)

v ] + bp) (10)

where Wp ∈ Rlp×2nplw and bp ∈ Rlp . The aggregated co-
attentional user and item embeddings are used in both rating
prediction and explanation generation.

3.3 Multi-Task Decoder
We propose a multi-task decoder that predicts ratings and
generates explanations based on representations learned in
the encoder and selector. We consider two types of user and
item embeddings. The first type is the co-attentional embed-
dings ēu and ēv , which are learned from explicit factors such
as reviews. The second is implicit factor representations hu
and hv . To simultaneously capture an item’s explicit and im-
plicit factors, the user and item embeddings are expressed as
xu = [ēu; hu] and xv = [ēv; hv].
Rating Prediction. Factorization machine (FM) [Rendle,
2010] is used as the rating prediction method to model pair-
wise interactions between different features:

r = f(x) = w0 +
n∑
i=1

wixi +
n∑
i=1

n∑
j=i+1

〈mi,mj〉xixj (11)

Here, xi ∈ R is the i-th entry of x = [xu; xv], w0 ∈ R is the
bias, wi ∈ R and mi ∈ Rk are parameters to be learned. The
loss function of our rating prediction task is formulated as:

Lr =
1

2|Ω|
∑

(u,v)∈Ω

(r − r∗)2 (12)

where Ω represents the training set and r∗ is the correspond-
ing ground truth rating.
Explanation Generation. We generate explanation Y based
on user embedding xu, item embedding xv , predicted rating
r, and concepts chosen in the selector. We first show how
we use Gated Recurrent Unit (GRU) [Chung et al., 2014] to
translate xu, xv , and r into a sequence of words. Then, we
introduce two related losses used in the training process.

GRU. GRU demonstrates high capability in text generation
tasks. To incorporate xu, xv , and r into GRU, we compute the
initial hidden state s0 by:

s0 = tanh(Wuxu + Wvxv + Wr r̂ + bs) (13)

Here, r̂ is a vector representation of r. r̂ is calculated by
rounding r into an integer (e.g., 3.14→ 3) and converting it
to a one-hot vector. Wu, Wv , Wr, and bs are parameters to be
learned. The hidden state st at time t is calculated recursively:

st = GRU(st−1,ωyt) (14)
where ωyt is the embedding of the word yt generated at time
t. This hidden state is fed into the output layer to generate the
output word distribution ot as time t:

ot = ζ(Wost−1 + bo) (15)

where Wo ∈ R|V|×lt , bo ∈ R|V|, ζ is the softmax function
and |V| is the vocabulary size. During testing, beam search
is used to find the best explanation Y = (y1, ..., yT ) with the
maximum log-likelihood

∑T
t=1 log ot,yt .

Concept relevance loss Lc. During training, Lc is used to
increase the probability that the selected concepts appear in
Y . Let us denote the selected concept vector as τ ∈ R|V|. τk
is 1 if the k-th word is a concept and has been selected by at
least one pointer and is 0 otherwise. Lc is computed by:

Lc =
1

|Ω|
∑

(u,v)∈Ω

T∑
t=1

(max
k

(−τk log ot,k)) (16)

Negative log-likelihood loss Ln. Ln is widely used to en-
sure that the generated words are similar to the ground truth
ones. Let yt∗ denote the ground truth word at time t, we have

Ln =
1

|Ω|
∑

(u,v)∈Ω

T∑
t=1

(− log ot,yt∗) (17)

3.4 Joint Learning
Different types of loss functions are linearly combined to
jointly learn two tasks in an end-to-end manner:

L = Lr + λcLc + λnLn + λl‖Θ‖22 (18)

where λc, λn, and λl are weights that balance the impor-
tance of different losses. Θ contains all model parameters.
We choose Adam [Kingma and Ba, 2015] as the training op-
timizer because it empirically outperforms other stochastic
optimization methods.

4 Experiments
4.1 Experimental Settings
Datasets. Three publicly available datasets from different do-
mains are used in our evaluation:
• Electronics is the part of Amazon dataset3 that focuses on

electronic products. We use the 5-core version where users
and items have no fewer than 5 reviews.

Electronics Movies&TV Yelp-2016
Users 192,403 123,960 677,379
Items 63,001 50,052 84,693

Reviews 1,688,117 1,697,533 2,530,843
Concepts 652 791 1,004

Table 1: Statistics of three public datasets.

3http://jmcauley.ucsd.edu/data/amazon/



Datasets Criteria Retrieval Generative Ours Improvement (%)
LexRank NARRE RLRec NRT CAML-G CAML-C CAML ∆Retrieval ∆Generative

Electronics

BLEU 1.44 1.45 1.45 1.33 1.79 1.92 1.97 +35.9 +48.1
ROUGE-1 14.22 15.19 11.12 17.39 18.64 19.00 19.26 +26.8 +10.8
ROUGE-2 3.60 3.29 1.60 3.50 3.63 3.78 3.81 +5.8 +8.9
ROUGE-L 13.70 13.28 9.70 15.71 16.37 16.63 16.75 +22.3 +6.6

ROUGE-SU4 4.38 5.25 3.13 5.97 6.26 6.43 6.47 +23.2 +8.4

Movies&TV

BLEU 1.78 1.75 1.73 1.60 1.94 2.04 2.04 +14.6 +27.5
ROUGE-1 15.68 15.31 11.61 18.09 18.86 19.14 19.32 +23.2 +6.8
ROUGE-2 2.45 3.62 3.84 4.30 4.48 4.43 4.58 +19.3 +6.5
ROUGE-L 12.46 12.99 10.06 16.00 16.41 16.48 16.69 +28.5 +4.3

ROUGE-SU4 5.24 5.79 4.98 6.29 6.52 6.57 6.71 +15.9 +6.7

Yelp

BLEU 0.97 1.13 1.13 1.31 1.50 1.57 1.58 +39.8 +20.6
ROUGE-1 11.06 10.55 9.28 13.31 13.93 14.15 14.24 +28.8 +7.0
ROUGE-2 2.42 2.66 1.93 3.05 3.42 3.47 3.50 +31.6 +14.8
ROUGE-L 10.15 9.30 8.18 12.13 12.70 12.84 12.90 +27.1 +6.3

ROUGE-SU4 3.58 3.85 3.10 4.60 4.92 5.00 5.03 +30.6 +9.3

Table 2: Evaluation results for explanation generation. CAML-G and CAML-C are two variants of our method. ∆Retrieval and ∆Generative

denote the relative improvement of CAML over the most competitive retrieval baseline and the generative baseline.

• Movies&TV is also from the Amazon 5-core dataset. This
dataset focuses on movies and TVs.

• Yelp contains restaurant reviews from Yelp Challenge
20164. Compared with the first two datasets, the Yelp
dataset is larger and much sparser.

For each dataset, we keep the top 40,000 most frequent
words. We filter both rare concepts (occurring in less than
0.5% of reviews) and domain-dependent frequent concepts
(e.g., movie and film in dataset Movies&TV). The statistics
of the datasets are shown in Table 1.
Baselines. To evaluate explainability, we compare CAML
with both retrieval methods and a generative method.
• Retrieval. Retrieval methods select linguistic explanations

from review comments in the training set. Three retrieval
methods are considered. The first is Lexrank [Erkan and
Radev, 2004], a stochastic graph-based method for com-
puting relative importance of textual units. The other base-
lines are NARRE [Chen et al., 2018] and RLRec [Wang
et al., 2018b], which obtain the important sentences or re-
views by employing the attention mechanism.

• Generative. Generative methods create explanations by
using RNNs. The state-of-art generative method is NRT
[Li et al., 2017], which generates an explanation based on
rating and the word-level distribution of the review.
To evaluate the accuracy of rating prediction, we compare

CAML with two groups of baselines:
• CF. The first group consists of Collaborative Filtering (CF)

methods. These methods require only the observed rat-
ings for prediction. In particular, we consider three pop-
ular CF methods: PMF [Mnih and Salakhutdinov, 2008],
NMF [Lee and Seung, 2001], and SVD++ [Koren, 2008].
• Neural. The second group contains neural models that

leverage review comments for rating prediction. Four
state-of-the-art methods are considered: MPCN [Tay et al.,
2018], NARRE, RLRec, and NRT.

Evaluation criteria. To measure explainability, we lever-
age BLEU [Papineni et al., 2002] and ROUGE [Lin, 2004],
which are widely used in machine translation and natural lan-
guage generation to evaluate the similarity between ground

4https://www.yelp.com/dataset/challenge

Case 1. User interest: horror, night, fun
NRT I’ll admit it.

CAML I am a huge fan of horror movies, and this is one
of my favorite movies.

Truth Remember when horror movies were fun?
Case 2. User interest: humor, scenery, main character

NRT I love this series.
CAML If you like british humor, you will love this series.

Truth This is very british humor.
Case 3. User interest: story line, cartoon, worth

NRT I enjoyed this series as much as the first one.
CAML I enjoyed this movie, the animation was great and

the story line was very good.
Truth Great price and the animation was cool.

Table 3: Explanations generated by NRT and CAML. “Truth” rep-
resents the ground truth explanation. Bolded words are concepts.

truth texts and generated texts [Li et al., 2016; Li et al., 2017].
Following [Li et al., 2017], we set the ground truth explana-
tions as the first sentences in the reviews. Li et al. also con-
sider tips (short comments provided by users) as ground truth
explanations. We ignore tips because most of them are not in-
formative (e.g., “This is a good movie”). Note that the ground
truth reviews (Du,v) will be excluded from the inputs (Du and
Dv) to prevent leak of information. We use F-measures of
ROUGE-1, ROUGE-2, ROUGE-L and ROUGE-SU4 to eval-
uate the explanations in different granularities. Larger BLEU
and ROUGE scores indicate better explainability.

The accuracy of rating prediction is evaluated by employ-
ing Root Mean Square Error (RMSE) [Chen et al., 2018],
which measures the deviation between the predicted ratings r
and the ground truth ratings r∗.
Implementation details. We implement CAML by using
Tensorflow5. The models are trained on NVIDIA Tesla P100.
We randomly choose 80% of samples as the training data,
10% as validation and 10% for testing on each dataset. We
initialize the hyper-parameters for the baselines by following
the corresponding paper and carefully tune them to ensure
that they achieve the optimal performance. The initial learn-
ing rate is set to 10−3. The number of pointers is tested in

5https://www.tensorflow.org



Datasets CF Neural Models Ours Improvement (%)
PMF NMF SVD++ MPCN NARRE RLRec NRT CAML-R CAML-C CAML ∆CF ∆Neural

Electronics 2.065 1.170 1.105 1.105 1.103 1.102 1.091 1.085 1.086 1.085 +1.8 +0.6
Movies&TV 1.250 1.089 1.013 1.001 0.999 1.012 0.990 0.990 0.987 0.987 +2.6 +0.3

Yelp 1.829 1.290 1.193 1.193 1.190 1.220 1.186 1.180 1.173 1.173 +1.7 +1.1

Table 4: Numerical results for rating prediction (RMSE). CAML-R and CAML-C are two variants of our model. ∆CF and ∆Neural represent
the relative improvement of CAML over the most competitive CF baseline and neural baseline.

(a) Fluency (b) Usefulness
Figure 3: Human evaluation results on explanation quality.

[1, 2, 3, 4, 5] for all datasets. For model regularization, the
dropout rate is set to 0.2 and the L2 regularization is a fixed
number 10−6. We set the rating prediction and the explana-
tion generation as the same weight 1.0, and tune λc among
[0.01, 0.05, 0.1, 0.2, 0.5].

A more comprehensive description of experimental set-
tings can be found in the supplementary material6.

4.2 Explainability Study
Overall performance. Table 2 shows that CAML consis-
tently outperforms baselines in terms of BLEU and ROUGE
scores on different datasets. Take BLEU as an example,
CAML achieves 14.6% to 39.8% improvement over the most
competitive retrieval method and obtains 20.6% to 48.1% im-
provement over the state-of-art generative method. This il-
lustrates the effectiveness of our encoder-selector-decoder ar-
chitecture and the multi-pointer co-attention selector. Our
method consistently outperforms NRT because it learns deep
user-item interactions and provides explicit constraints on the
explanations to improve the explanation quality.
Human evaluation w.r.t. fluency and usefulness. With the
help of a vendor company, we hire three experienced asses-
sors. We sample 100 test cases from the three datasets and
ask the assessors to evaluate if the generated sentences are
fluent and useful for helping them decide whether they will
try the item or not. The assessors do not know each other
and are not aware of which explanation comes from which
method (the order of the explanations are randomly shuffled).
Fig. 3 shows our model outperforms the state-of-art genera-
tive method NRT in terms of both fluency and usefulness on
all three datasets. Here, good ratio denotes the percentage
of sentences that are considered fluent or useful. The Kappa
scores for fluency and usefulness are 0.514 and 0.465, respec-
tively, showing moderate agreements among assessors.
Case analysis. Table 3 shows examples of explanations gen-
erated by NRT and our method (Movies&TV dataset). For
each user in the three cases, we display three concepts that
s/he most frequently mentioned in the reviews (training set)

6 The supplemental material is available at https://github.com/
3878anonymous/CAML/blob/master/supplemental.pdf

to reveal her/his interest. This table shows that our model can
select the concepts that fit the user interests, and generate ex-
planations that contain one or multiple appropriate concepts.
Compared with NRT, our explanations are informative, useful
and similar with the ground truth explanations.

4.3 Accuracy of Rating Prediction
The evaluation results of recommendation accuracy is shown
in Table 4. In general, neural models outperform traditional
CF methods. This is because that the neural models learn
more effective representations of users and items through
deeper architectures. Moreover, all neural models leverage
additional information (i.e., reviews).

Our model consistently achieves the highest accuracy on
all three datasets and outperforms NRT by 0.9% on average.
This demonstrates the effectiveness of our encoder-selector-
decoder architecture and our approach for modeling explicit
user-item interactions through hierarchical co-attention.

4.4 Ablation Analysis
Effectiveness of multi-task learning. We compare our
multi-task learning model with two variants that consider
only one task. The first variant, CAML-G considers only ex-
planation generation and removes the rating prediction loss
Lr from Eq. (18). The second variant, CAML-R takes into
account only rating prediction and removes explanation gen-
eration losses Lc and Ln from Eq. (18). Tables 2 and 4
show that our multi-task learning model achieves better per-
formances than the single-task models. This suggests that
sharing information between two tasks is beneficial.
Effectiveness of concept selection. To study the effective-
ness of involving concepts, we evaluate the performance
of CAML-C. In CAML-C, we remove concept-level co-
attention pointer, set eu to d′u, set ev to d′v , and remove the
concept relevant loss Lc from Eq. (18). From Tables 2 and
4 we can see that CAML-C consistently performs worse than
or equal to CAML in terms of both explainability and accu-
racy. The results show the effectiveness of concept selection,
especially for the explanation generation task.

5 Conclusion
In this paper, we propose a co-attentive multi-task learning
model for explainable recommendation, which fully exploits
the correlations between the recommendation task and the
explanation task to improve both accuracy and explainabil-
ity. Specifically, we propose an encoder-selector-decoder ar-
chitecture that is inspired by the cognitive process of human
decision making. A hierarchical co-attentive selector is de-
signed to effectively model the cross knowledge. Experi-
ments show that our approach outperforms state-of-the-art
baselines on both the accuracy of rating prediction and the
quality of generated explanations.
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