
Hi-Fi Ark: Deep User Representation via High-Fidelity Archive Network

Zheng Liu1 , Yu Xing2 , Fangzhao Wu1 , Mingxiao An2 , Xing Xie1
1Microsoft Research Asia, Beijing, China

2University of Science and Technology China, Hefei, China
{zhengliu, v-yuxing, fangzwu, v-minan, xingx}@microsoft.com

Abstract
Deep learning techniques have been widely ap-
plied in modern recommendation systems, leading
to flexible and effective ways of user representa-
tion. Conventionally, user representations are gen-
erated purely in the offline stage. Without referenc-
ing to the specific candidate item for recommen-
dation, it is difficult to fully capture user prefer-
ence from the perspective of interest. More recent
algorithms tend to generate user representation at
runtime, where user’s historical behaviors are at-
tentively summarized w.r.t. the presented candidate
item. In spite of the improved efficacy, it is too ex-
pensive for many real-world scenarios because of
the repetitive access to user’s entire history. In this
work, a novel user representation framework, Hi-Fi
Ark, is proposed. With Hi-Fi Ark, user history is
summarized into highly compact and complemen-
tary vectors in the offline stage, known as archives.
Meanwhile, user preference towards a specific can-
didate item can be precisely captured via the atten-
tive aggregation of such archives. As a result, both
deployment feasibility and superior recommenda-
tion efficacy are achieved by Hi-Fi Ark. The ef-
fectiveness of Hi-Fi Ark is empirically validated
on three real-world datasets, where remarkable and
consistent improvements are made over a variety of
well-recognized baseline methods.

1 Introduction
The flourish of deep learning techniques has greatly pro-
moted the progress of recommendation systems. One of the
most notable practices is user representation, where deep neu-
ral networks are employed to extract users’ stable behav-
ioral patterns in the long run. For such kind of applications,
neural networks work as an encoding function of user his-
tory, which encodes user’s underlying preference into com-
pact vectors. Conventionally, user representations are well
generated in the offline stage, making it independent of spe-
cific candidate item and incapable of making adaption for
the recommendation context. Because of its simplicity, the
candidate-independent representation is widely adopted in in-
dustry. However, without referencing to specific recommen-

dation context, the candidate-independent representation will
probably be too generalized to reflect user’s preference from
the interested aspect, which inevitably impairs the recom-
mendation performance.

Recently, more advanced approaches are inspired by the
popularity of attention mechanisms [Zhou et al.2018b, Zhou
et al.2018a,Wang et al.2018]. By attentively aggregating user
history w.r.t. the given candidate, user preference can be bet-
ter captured from the perspective of interest. However, such
kind of user representation has to be conducted at runtime,
(i.e., everytime a specific candidate needs to be recommended
for the user,) and it requires the access to the user’s entire
history. As a result, it will repetitively incur a series of time-
consuming data retrieval operations. (For example, the access
to a user’s viewed ads involves the selection of her previous
ads-clicks from activity logs, followed by the join with tables
of ads’ contents.) Considering that recommendations must be
made in real-time for many applications, like news feed and
online advertising, the deployment feasibility of such meth-
ods will be severely limited. In fact, it remains a challenging
problem to have user represented with both superior recom-
mendation efficacy and deployment feasibility.

To address this challenge, a novel user representation
framework, High-Fidelity Archive Network (Hi-Fi Ark) is
proposed, which makes the best of both worlds. Instead of
allocating each user with one unique representation, Hi-Fi
Ark compresses user history into a small constant number of
“archives” in the offline stage (each of which is a vector).
With this mild augmentation in space and judicious infor-
mation extraction, it is expected that user preference can be
comprehensively preserved with the highly compact archives.
While deployed in the online service, these archives will be
attentively aggregated w.r.t. the candidate item such that user
preference can be fully captured from the interested perspec-
tive. To realize the above ambition, technical designs are car-
ried out in the following ways.

First of all, one of the major deficiencies about the
candidate-independent representation is that user history is
summarized in a fixed and monotonous fashion, thus inca-
pable of reflecting user preference comprehensively. In Hi-
Fi Ark, the multi-head attentive pooling mechanism is em-
ployed, which encodes user history into multiple comple-
mentary vectors. Each of these vectors is deployed to re-
flect user’s behavioral patterns from a specific aspect; there-
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Figure 1: Schematic Illustration for Hi-Fi Ark’s Architecture (better viewed in colour).

fore, user preference can be comprehensively preserved by
such compact archives. However, the direct enforcement
of multi-head attentive pooling may result in incompatibility
and redundancy between different heads, which will severely
limit their joint representation capability. Thus in the sec-
ond place, the coordinated mechanism, namely orthogonal
multi-head attentive pooling, is developed. On the one hand,
the pooling heads are initially set as the orthogonal basis of
the items’ vectorization space. It is demonstrated that such
a deployment of pooling heads is desirable, as the princi-
ple of user’s behavioral patterns can be fully captured with
it. On the other hand, to eliminate the redundancy from sub-
sequent operations, an auxiliary regularization function is de-
vised, which guarantees the pooling heads’ complementarity
all the way through the training process. Last but not least,
given that user’s historical items may not be precisely repre-
sented due to insufficient feature or inaccurate encoder, con-
siderable noise might be introduced when representations are
summarized from user history. To address this problem, the
intra-correlation about user history is explicitly leveraged via
self-attention. By aggregating each item’s representation with
those relevant in semantics, essences of user behaviors can be
extracted more robustly.

Major contributions of this work are summarized into the
following three points.
• A novel user representation framework, Hi-Fi Ark, is

proposed in this work. By judiciously summarizing user
history into compact archives, and attentively aggregat-
ing these archives w.r.t. the presented candidate, user’s
specific preference can be precisely captured without ex-
pensive access to the entire history.
• With the joint employment of orthogonal multi-head at-

tentive pooling and self-attention, user preference can be
captured comprehensively and robustly by the archives.
• Extensive empirical studies are performed with three

real-world datasets on news recommendation, online ad-
vertising, and e-commerce, respectively. It is demon-
strated that Hi-Fi Ark outperforms the well-recognized
baseline methods remarkably and consistently, thereby
verifying the effectiveness of our proposed methods.

The rest of this paper is organized as follows. The overview
of Hi-Fi Ark and its detailed analysis are presented in Section
2. Then empirical studies of Hi-Fi Ark are conducted in Sec-
tion 3, followed by the related work discussed in Section 4.
Finally, conclusion of this work is made in Section 5.

2 Hi-Fi Archive Network
In this section, we will get started with the preliminaries and
architecture of Hi-Fi Ark; then detailed analysis will be made
for each of its components.

2.1 Preliminaries and Architecture
Hi-Fi Ark works with four basic steps: item vectorization,
archive generation, archives’ aggregation w.r.t. candidate
and CTR prediction, whose pipeline is illustrated as Figure
1. First of all, user’s historical items (e.g., news clicks) Vu
are mapped from raw features into continuous vectors Θu,
where items’ semantics are encoded1. Secondly, the vector-
ized items Θu are compressed into a small set of vectors Bu,
called archives. These archives serve as flexible candidate-
independent representations for the user in the offline stage.
Thirdly, given a candidate item v́ for recommendation, the
archives are attentively aggregated w.r.t. the candidate’s en-
coded vector θv́ , where user representation relevant to the
candidate, φuv́ , is produced. Finally, φuv́ and θv́ are jointly pro-
cessed by a specific feed forward function (e.g., multi-layer
perception), where u’s click through rate about v́ is obtained.

To distinguish from the original way of candidate-relevant
user representation, which works directly with user’s entire
history, definitions for the Original Candidate-relevant Rep-
resentation (OCR) and the Archived Candidate-relevant Rep-
resentation (ACR) are introduced as follows.

Definition 1 (OCR, ACR) Given vectorized items of user’s
entire history Θu, archives Bu, and a candidate item v́, OCR,
denoted as φ̂uv́ , is generated as the attentive aggregation of u’s
entire history Θu w.r.t. v́; meanwhile ACR, denoted as φuv́ , is
the attentive aggregation of the archives Bu w.r.t. v́.

1Mapping functions are individualized for different data, con-
crete implementations are introduced in Section 3.
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It seems that OCR will always be a more precise reflection
for the user’s preference towards v́, as it is made on top of
user’s entire history. However, with judicious extraction of
user’s informative behavioral patterns via Hi-Fi Ark, compa-
rable performance can be achieved by the resulted ACR.

2.2 Orthogonal Multi-head Attentive Pooling
Each user’s vectorized items are to be summarized with k
archives through Orthogonal Multi-head Attentive Pooling
(OMAP). In this place, a set of k vectors Λ = {λ1, ..., λk},
namely pooling heads, are introduced. With each head λi,
user u’s vectorized items are attentively aggregated into the
archive βui via the following operations:

βui =
∑

Θu
αiθθv, where αvi =

exp{θTv λi}∑
Θu exp{θTv λi}

. (1)

It is apparent that each pooling head summarizes user his-
tory from a unique perspective, and an increasing number
of pooling heads tend to have a more comprehensive view
of the user. However, it is not a plausible choice to make
use of multiple heads casually. On the one hand, because
of the underlying redundancy and incompatibility, it is un-
likely for a small number pooling heads to get user repre-
sented comprehensively; on the other hand, a huge number of
pooling heads, despite a more comprehensive view, require
much more space to keep the archives, making it expensive
and awkward for online deployment. To have users compre-
hensively represented in a compact way, the following mech-
anisms are developed on top of the fundamental multi-head
attentive pooling.
Pooling Heads Installation. As is discussed, the efficacy
of multi-head attentive pooling is greatly limited by its un-
derlying redundancy and incompatibility. To overcome such
a problem, the pooling heads are deployed w.r.t. the following
pair of intuitions.

• The pooling heads should be distinguished from each
other so that user history can be summarized from dif-
ferent perspectives; i.e., for each pair of λi, λj ∈ Λ, it
is desired that the similarity between them sim(λi, λj)
can be minimized.
• The pooling heads have to be deployed w.r.t. the vector

distribution of the whole items Θ̂ 2 (i.e., the items ever
consumed by the users), such that the principle of user
information can be fully preserved.

With both considerations, the pooling heads are initialized as
the orthogonal basis of Θ̂’s vector space. Particularly, such
pooling heads can be acquired through the following opti-
mization problem,

min
W

∑
θv∈Θ̂

‖θv − θvWWT ‖2, (2)

where θv is a d-dimension vector, and W is a d×k matrix. It
is straightforward that the above problem is convex and fully
differentiable, where the optimal solution W∗ can be derived

2Θ̂ can be easily acquired beforehand thanks to the popularity of
unsupervised representation learning and pre-trained models.

Algorithm 1: End-to-End CTR Prediction
Input: user u’s historical items Vu, candidate item v́;
Output: click through rate ω(u, v́);
begin

Vectorize historical items Vu into Θu;
Self-attention over Θu for Θ̇u via Eq. 7;
Represent items as Θ̂u ← Θu + Θ̇u;
Pooling heads installation for Λ via Eq. 2;
Get user archives Bu via Eq. 1, on top of Λ and Θ̂u;
Aggregate Bu w.r.t. θ̂v́ and get ACR φuv́ via Eq. 4;
Predict CTR ω(u, v́) on top of φuv́ and θ̂v́ via Eq. 8;

via gradient descent. Finally, each pooling head λi is set to
be the i-th column of W∗:

λi ←W∗
i , 0 < i ≤ k. (3)

With the above way of pooling heads installation, the resulted
archives can be comparable to the original entire history, as
user preference from arbitrary aspect can be well preserved.
Such a property is stated as Theorem 1.
Theorem 1 Archives Bu is a near lossless compression of
user history Θu, as the transformations between ACR φuv́ and
OCR φ̂uv́ are approximately invertible.
Proof 1 ACR and OCR, according to their definitions in Def.
1, are calculated as the attentive aggregations (w.r.t. v́) of
user’s archives and the entire history, respectively:

φuv́ =
∑

Bu
αiβ

u
i , where αi =

exp{βuTi θv́}∑
Bu exp{βuTj θv́}

, (4)

φ̂uv́ =
∑

Θu
ovθv, where ov =

exp{θTv θv́}∑
Θu exp{θTv θv́}

. (5)

Provide that W∗ is an orthogonal basis of Θ̂, and products
between vectors (θTv θv́ , θTv λi, β

uT
i θv́) are small enough, the

following relationships can be derived:

φuv́ ∝ (Bu)TBuθv́ +
∑

Bu
βui

∝ ((ΘuW∗)TΘu)T (ΘuW∗)TΘuθv́ +
∑

Bu
βui

= (Θu)TΘu(Θu)TΘuθv́ +
∑

Bu
βui ,

φ̂uv́ ∝ (Θu)TΘuθv́ +
∑

Θu
θv.

(Notations are kind of abused here, as column vectors sets Bu

and Θu can also be treated as matrices.) Based on the above
relationships, it is easy to verify that there will always exist a
full rank k × k matrix Ψ, which satisfies:

(Bu)TBu = W∗ΨΨ(W∗)T ,

(Θu)TΘu = W∗Ψ(W∗)T .

As a result, the following relationships can be derived:

φuv́ ∝W∗Ψ(W∗)T (φ̂uv́ − ε̂
∑

Θu
θv) + ε̂

∑
Bu

βui ,

φ̂uv́ ∝W∗Ψ−1(W∗)T (φuv́ − ε
∑

Bu
βui ) + ε

∑
Θu

θv.
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therefore justifying the statement of Theorem 1. Notice that
although dot-attention is used throughout the paper for bet-
ter empirical performances, it’s straightforward that the same
conclusion holds for many other ways of attention, e.g., gen-
eralized dot xWyT and concatenation Wconcat(x,y)T .

The above property indicates that user’s informative behav-
ioral patterns are fully preserved on top of the proposed pool-
ing heads installation, based on which the preference toward
the candidate can be extracted with high-fidelity.
Orthogonal Pooling Heads Scattering. Following the in-
stallation operation, the pooling heads will be further incor-
porated into an end-to-end working pipeline (to be discussed
in Section 2.4), which is trained to predict the click through
rate. To ensure that redundancy is excluded from the pool-
ing heads during such a process, function Ω is employed to
restrict the changes of Λ:

Ω = ‖ΛTΛ ◦ (Jk − Ik)‖F , (6)

In the above equation, Jk and Ik are the k-dimension all-
one and identity matrices, respectively, and ◦ denotes the
Hadamard product. Ω is employed as a regularizer and re-
stricted to be tiny during the training process. As a result,
orthogonality is maintained as the inner products between dif-
ferent pooling heads are forced to be zeros.

2.3 Self-Attentive Item Vectorization
It is desired that historical items are precisely vectorized from
their raw features, so that user preference can be truthfully
extracted on top of them. However, this condition doesn’t
always hold in reality, given that insufficient features or inac-
curate encoders will introduce tremendous noise to the vec-
torized items. To address this problem, self-attention is em-
ployed by Hi-Fi Ark, where the intra-correlation about user
history is leveraged. Instead of working with the vector-
ized items directly, the self-attended vector θ̇v ( [Vaswani et
al.2017]) is calculated:

θ̇v =
∑

Θu
αv′θv′ , where αv′ =

exp{θTv′θv}∑
Θu exp{θTv′θv}

. (7)

As a result, each item will be aggregated with those rele-
vant in semantics. It can be interpreted as the importance
sampling for item v’s underlying category, where the impor-
tance weights equal to the corresponding attention scores;
with the aggregation of such samples, noise is resisted for
each item and its true category can be better reflected. Fol-
lowing the common practice, the original vectorized item and
self-attended vector are combined into the joint vector θ̂t via
residual connection, i.e., θ̂v ← θ̇v + θv .

2.4 End-to-End CTR Prediction
Once user’s archives are well generated based on historical
items, they will be deployed for the recommendation service.
Presented with a candidate item v́, the archives will be atten-
tively aggregated into the archived candidate-relevant repre-
sentation φuv́ w.r.t. v́ (as indicated by Eq. 4), based on which
user preference is precisely reflected from the perspective of
interest. Both user and item’s representations, φuv́ and θv́ , will

News Ads E-Commerce

#users 10000 2956 15163

#items 49751 16375 45779

#clicks/u 84.42 10.74 52.39

feature Text DSSM ID

Table 1: Dataset Statistics.

be jointly processed by a certain type of feed forward network
f so as to predict the click through rate ω(u, v́):

ω(u, v́) = f(φuv́ , θv́). (8)

Finally, the unified end-to-end CTR prediction is shown as
Alg. 1, based on which the whole model is trained to optimize
the following binary classification problem,

minF{U,V́}(ω(u, v́), I(u, v́)) + τΩ, (9)

In Eq. 9, F calculates the binary cross entropy, I(u, v́) repre-
sents the binary labels, and Ω is the orthogonality regularizer
defined in Eq. 6. Positive instances in {U, V́} are collected
from the ground-truth clicks, while the negative ones are ran-
domly sampled.

3 Empirical Studies
3.1 Experiment Settings
The following three datasets on news recommendation, on-
line advertising and e-commerce are adopted for evaluation,
whose statistics are shown in Table 1.
News. A total of 5-week news clicks are provided by MSN
News from the EN-US market3. The dataset includes: 1)
click relationships between users and news, 2) news titles,
3) news categories (e.g, sports, finance). Samples within the
first four weeks are used for training, while those in the last
week are used for testing. Titles are used as raw features,
with 1D CNN employed as text encoder. The text encoder is
pretrained for the classification of news category.
Ads. A total of one-week Ads clicks are offered by Bing
Ads [Parsana et al.2018], which includes: 1) click relation-
ships between users and URLs, 2) titles of URLs. The titles
have already been mapped into 300-dimension vectors with a
well pretrained DSSM model [Huang et al.2013] over mas-
sive corpus.
E-Commerce. This dataset4 contains users’ shopping be-
haviors on Amazon (the ratings-only dataset). All the pur-
chased items are treated as positive cases, while negative
cases are randomly sampled from the non-purchased ones.
In contrast to other dataset, items in this dataset are purely
represented by an unique ID, which is to be vectorized via a
cold-started embedding matrix. As a result, we are able to
evaluate the boundary case where recommendations have to
be made with highly limited features.

The following baseline methods are jointly evaluated in our
empirical studies.

3https://www.msn.com/en-us/news
4http://jmcauley.ucsd.edu/data/amazon/
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News Ads E-Commerce

AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10 AUC NDCG@5 NDCG@10

AVG 0.6508/0.6535 0.3525/0.3546 0.4298/0.4318 0.8096/0.8108 0.5261/0.5307 0.5770/0.5817 0.7531/0.7647 0.4348/0.4582 0.5011/0.5161

CNN 0.6463/0.6481 0.3469/0.3488 0.4253/0.4267 0.8148/0.8207 0.5374/0.5478 0.5923/0.6032 0.6751/0.6806 0.358/0.3659 0.4214/0.4271

MUL 0.6567/0.6588 0.3555/0.3583 0.4333/0.4354 0.8593/0.8618 0.6464/0.6480 0.6845/0.6902 0.8421/0.8461 0.6151/0.6244 0.6543/0.6653

SNG 0.6469/0.6485 0.3505/0.3526 0.4275/0.4294 0.8426/0.8446 0.6041/0.6070 0.6470/0.6532 0.7741/0.7766 0.4746/0.4757 0.5320/0.5367

MEM 0.6423/0.6430 0.3457/0.3462 0.4242/0.4245 0.8448/0.8482 0.6471/0.6477 0.6827/0.6865 0.7712/0.7868 0.4689/0.4839 0.5303/0.5445

ATT 0.6476/0.6496 0.3507/0.3536 0.4282/0.4308 0.8850/0.8866 0.7315/0.7364 0.7547/0.7585 0.7066/0.7125 0.3983/0.4084 0.4572/0.4687

ARK-DE-3 0.6560/0.6565 0.3546/0.3550 0.4323/0.4328 0.8475/0.8513 0.6338/0.6427 0.6719/0.6802 0.8381/0.8433 0.5861/0.6012 0.6326/0.6453

ARK-EN-3 0.6618/0.6631 0.3611/0.3635 0.4378/0.4395 0.8779/0.8786 0.6711/0.6732 0.7083/0.7149 0.8446/0.8535 0.6225/0.6396 0.6607/0.6750

Table 2: Major experimental results (for every entry, the average performance is presented in the front, with the peak value followed in the
second place; the highest scores across different methods are highlighted in bold).

Average Pooling (AVG). User representation φuv́ is gener-
ated with the average pooling of user’s historical vectorized
items Θu.
1D CNN (CNN). User representation φuv́ is generated with
a 1D convolutional neural network followed by the average
pooling operation over Θu.
Multi-head Attention (MUL). User archives are generated
with multi-head attentive pooling at first as Hi-Fi Ark, but in-
tegrated into one unified vector with a kd×dmapping matrix,
which follows [Vaswani et al.2017].
Single-head Attentive Pooling (SNG). A special case of
multi-head attentive pooling, which only one single head is
employed; thus, only one share of archive is generated.
KV Memory Network (MEM). External vectors known as
keys are introduced, with which user history is summarized
(written) and attentively aggregated (read) [Miller et al.2016].
Direct Attention (ATT). User representation is generated
by attending the entire history Θu w.r.t. the candidate, which
is the mechanism in [Zhou et al.2018b, Wang et al.2018].

Because of limited space, Hi-Fi Ark is mainly evaluated
for two variations with 3 pooling heads: the basic version
(ARK-DE), with only multi-head attentive pooling activated,
but OMAP and self-attention disabled; and the full version
(ARK-EN), where all modules are enabled. Meanwhile, ef-
fects of different number of heads and each functional com-
ponent are also studied. Notice that our method is for non-
sequential data, thus those for temporal recommendation,
e.g., Time LSTM [Zhu et al.2017], are not within discussion.
We focus on evaluating the effectiveness of user representa-
tion, where a simple dot operation is used for CTR calculation
(no obvious difference in performance with other simple al-
ternatives, like MLP). However, sophisticated models, e.g.,
DeepFM, can be seamlessly combined. Finally, We evaluate
the performance in terms of AUC scores and NDCG@(5, 10).

3.2 Experiment Analysis
The major experimental results are demonstrated in Table 2,
where different methods are jointly compared over all three
datasets. It can be clearly observed that ARK-EN-3 outper-
forms other methods on News and E-Commerce; meanwhile,
it is merely second to ATT on Ads by a comparatively small

margin. In our experiment, ATT is the only method, which
makes recommendation on top of user’s entire history (the
others are based on summarization of user history). Intu-
itively, it should have made the best performances in all cir-
cumstances. However, we have a somewhat unexpected ob-
servation: as ARK-EN-3 beats ATT on both News and E-
Commerce, moreover, ARK-EN-3’s performance is way bet-
ter than ATT on E-Commerce. Much of this phenomenon
is resulted from the differences in feature granularity. Par-
ticularly, ATT heavily relies on fine-grained features, as it
will attend every single item in history to identify the rele-
vant context to a query; ARK-*, however, is less sensitive to
the feature granularity of individual items, as it works with
summarization of all items in user history. Both Ads and
News datasets make uses of items’ texts as their raw fea-
tures, but texts of Ads are encoded with a powerful DSSM
model [Huang et al.2013] well-trained over massive corpus,
which characterizes items much more precisely. On the other
hand, only item IDs are available in the E-Commerce, where
no explicit semantic information is incorporated, which leads
to much weaker characterization for the items in contrast to
the others. Such properties align exactly with their demon-
strated performances in the experiment, which confirms our
analysis. At the same time, we can also observe that ARK-
EN-3 is consistently better than ARK-DE-3, which indicates
that OMAP and self-attention are necessary for improving
the efficacy of multi-head attentive pooling. A more detailed
analysis is to be made in the next part.

Effects of different components and number of heads are
studied with the News dataset. Results on other datasets are
omitted due to similar observations and space limit.

Componential Analysis. Componential effect is studied
(in Table 3-A), with every single component, pooling heads
installation (-IN), orthogonal pooling heads scattering (-OR)
and self-attention (-SL), added on top of the multi-head at-
tentive pooling. Meanwhile, the basic (-DE) and full (-EN)
versions are also included for comparison. It can be observed
that all the components are playing positive roles, as consis-
tent improvements are achieved over the basic ARK-DE-3.

Hi-Fi Ark’s Implementation is available at https://github.com
/xyyimian/Hifi-Ark/
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A.	Component	Effect

AUC NDCG@5 NDCG@10

ARK-DE-3 0.6560/0.6565 0.3546/0.3550 0.4323/0.4328

ARK-IN-3 0.6567/0.6601 0.3550/0.3575 0.4329/0.4351

ARK-OR-3 0.6588/0.6597 0.3583/0.3595 0.4353/0.4361

ARK-SL-3 0.6588/0.6595 0.3571/0.3592 0.4345/0.4360

ARK-EN-3 0.6618/0.6631 0.3611/0.3635 0.4378/0.4395

B. #Heads	Effect

AUC NDCG@5 NDCG@10

SNG 0.6469/0.6485 0.3505/0.3526 0.4275/0.4294

ARK-EN-3 0.6618/0.6631 0.3611/0.3635 0.4378/0.4395

ARK-EN-5 0.6604/0.6610 0.3579/0.3594 0.4354/0.4364

ARK-EN-10 0.6607/0.6638 0.3592/0.3628 0.4360/0.4394

Table 3: Component (A) and #Heads (B) Effects (the highest aver-
age and peak values are marked in bold black; the 2nd highest values
in A are marked in bold blue).

Moreover, the combination of all components, i.e., ARK-EN-
3, outperforms all the other baselines. Such a phenomenon is
within our expectation, that different components work from
complementary perspectives, thus magnifying the effect of
every single component when integrated as a whole.

Effect of #heads. Effect of different number heads is stud-
ied with ARK-EN-*, where the pooling heads are set to be
3, 5 and 10, respectively. Besides, the special case of single-
head attentive pooling (SNG) is adopted for comparison. Ac-
cording to the results in Table 3-B, the employment of mul-
tiple heads does bring a remarkable leap forward, as signifi-
cant improvements are achieved over SNG. However, having
even more heads will not continuously benefit the efficacy,
as ARK-EN-5&10 show almost no increment over ARK-EN-
3. Recall that the adoption of multiple heads is to ensure the
comprehensive summarization of user history; and it is found
in our experiment that a rank-3 setting is already capable of
reconstructing all the vectorized items in the News dataset
with ignorable loss (i.e., the solution of Eq. 2). Thus, there’s
no wonder to see the efficacy of heaving merely 3 heads. Ac-
tually, the reconstruct loss can be used as an important refer-
ence for the selection of heads number in practice.

4 Related Work
In this section, relate work is analyzed from two aspects: deep
learning based recommendation and deep user representation.

Deep Learning-based Recommendation. Deep learning-
based recommendation systems have become popular in re-
cent years. Thanks to its powerful feature representation ca-
pability, deep learning techniques were firstly employed in
recommendation system so as to introduce diverse sources
of information; e.g., convolutional neural networks were ap-
plied for taking advantage of visual information [He and
McAuley2016], denoised auto encoder [Zhang et al.2016]
and recurrent neural networks [Bansal et al.2016] were
adopted for exploiting textual information, and network em-

bedding [Zhang et al.2016] was used to incorporate relational
information. Meanwhile, deep learning is used to learn com-
binatorial features [Cheng et al.2016, Guo et al.2017, Lian et
al.2018,Wang et al.2017a], where meaningful feature combi-
nations are selected as discriminative patterns via deep neural
networks. Finally, deep learning is also adapted as alterna-
tives to other classical algorithms, such as matrix factoriza-
tion [He et al.2017, Xue et al.2017].
Deep User Representation. Analogous to the representa-
tion learning of visual and textual information, deep learn-
ing is widely used to model user behavior, whose com-
pact and informative representation will greatly benefit the
efficacy of downstream recommendation. Roughly speak-
ing, user representation can be generated in two ways: the
candidate-independent approach and the candidate-relevant
approach. Particularly, user representation can be generated
in the offline stage purely based on user history [Elkahky
et al.2015, Covington et al.2016], which will be directly
deployed for online recommendation services. Such kind
of user representation is independent of specific candidate
item, and it is widely adopted in real-world industry ow-
ing to its simplicity. On the other hand, user representation
may also be generated at runtime [Zhou et al.2018b, Zhou et
al.2018a, Wang et al.2018], by attentively aggregating user
history w.r.t. specific candidate. It is found that better recom-
mendation performances can be achieved with the attentive
aggregation of user history, where similar conclusions have
also been reported in other areas like Question Answering and
Semantic Matching [Wang et al.2017b,Santos et al.2016,Lin
et al.2017]. Unfortunately, it is not always possible to meet
the requirement of runtime access to users’ entire history,
making it inapplicable for many real-world scenarios. Recent
works [Zhang et al.2017, Chen et al.2018] also make use of
memory networks [Sukhbaatar et al.2015, Miller et al.2016]
to model user’s behaviors. The memory networks are struc-
turally close to Hi-Fi Ark, as multiple memory units are intro-
duced for the attentive aggregation of specific queries. How-
ever, little effort is made previously on preserving user’s com-
prehensive preference with compact vectors. As is theoreti-
cally analyzed and empirically validated in our work, simple
augmentation in space is far from enough for such a purpose.

5 Conclusion
A novel user representation framework, Hi-Fi Ark, is pro-
posed in this work. With the joint employment of orthogonal
multi-head attentive pooling and self-attention, user history
is comprehensively summarized into compact archives; and
by attentively referencing to each candidate item, user pref-
erence can be precisely captured from the perspective of in-
terest. Thus, superior recommendation efficacy comes along
with strong feasibility in Hi-Fi Ark. Extensive experiments
are conducted over various real-world datasets, whose results
demonstrate the effectiveness of our proposed approaches.

Acknowledgements
The authors would like to thank Microsoft News for provid-
ing technical support and data in the experiments, and Jiun-
Hung Chen and Ying Qiao for their support and discussions.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3064



References
[Bansal et al., 2016] Trapit Bansal, David Belanger, and An-

drew McCallum. Ask the gru: Multi-task learning for deep
text recommendations. In RecSys, pages 107–114, 2016.

[Chen et al., 2018] Xu Chen, Hongteng Xu, Yongfeng
Zhang, Jiaxi Tang, Yixin Cao, Zheng Qin, and Hongyuan
Zha. Sequential recommendation with user memory net-
works. In WSDM, pages 108–116, 2018.

[Cheng et al., 2016] Heng-Tze Cheng, Levent Koc,
Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai,
Mustafa Ispir, et al. Wide & deep learning for recom-
mender systems. In Proceedings of the 1st Workshop on
Deep Learning for Recommender Systems, pages 7–10,
2016.

[Covington et al., 2016] Paul Covington, Jay Adams, and
Emre Sargin. Deep neural networks for youtube recom-
mendations. In RecSys, pages 191–198, 2016.

[Elkahky et al., 2015] Ali Mamdouh Elkahky, Yang Song,
and Xiaodong He. A multi-view deep learning approach
for cross domain user modeling in recommendation sys-
tems. In WWW, pages 278–288, 2015.

[Guo et al., 2017] Huifeng Guo, Ruiming Tang, Yunming
Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a
factorization-machine based neural network for ctr predic-
tion. arXiv preprint arXiv:1703.04247, 2017.

[He and McAuley, 2016] Ruining He and Julian McAuley.
Vbpr: Visual bayesian personalized ranking from implicit
feedback. In AAAI, pages 144–150, 2016.

[He et al., 2017] Xiangnan He, Lizi Liao, Hanwang Zhang,
Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural collabo-
rative filtering. In WWW, pages 173–182, 2017.

[Huang et al., 2013] Po-Sen Huang, Xiaodong He, Jianfeng
Gao, Li Deng, Alex Acero, and Larry Heck. Learning deep
structured semantic models for web search using click-
through data. In CIKM, pages 2333–2338, 2013.

[Lian et al., 2018] Jianxun Lian, Xiaohuan Zhou, Fuzheng
Zhang, Zhongxia Chen, Xing Xie, and Guangzhong Sun.
xdeepfm: Combining explicit and implicit feature inter-
actions for recommender systems. In KDD, pages 1754–
1763, 2018.

[Lin et al., 2017] Zhouhan Lin, Minwei Feng, Cicero
Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen Zhou,
and Yoshua Bengio. A structured self-attentive sentence
embedding. arXiv preprint arXiv:1703.03130, 2017.

[Miller et al., 2016] Alexander Miller, Adam Fisch, Jesse
Dodge, Amir-Hossein Karimi, Antoine Bordes, and Jason
Weston. Key-value memory networks for directly reading
documents. arXiv preprint arXiv:1606.03126, 2016.

[Parsana et al., 2018] Mehul Parsana, Krishna Poola, Yajun
Wang, and Zhiguang Wang. Improving native ads ctr pre-
diction by large scale event embedding and recurrent net-
works. arXiv preprint arXiv:1804.09133, 2018.

[Santos et al., 2016] Cicero dos Santos, Ming Tan, Bing Xi-
ang, and Bowen Zhou. Attentive pooling networks. arXiv
preprint arXiv:1602.03609, 2016.

[Sukhbaatar et al., 2015] Sainbayar Sukhbaatar, Jason We-
ston, Rob Fergus, et al. End-to-end memory networks.
In NIPS, pages 2440–2448, 2015.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In NIPS, pages 5998–6008, 2017.

[Wang et al., 2017a] Ruoxi Wang, Bin Fu, Gang Fu, and
Mingliang Wang. Deep & cross network for ad click pre-
dictions. In ADKDD, page 12, 2017.

[Wang et al., 2017b] Wenhui Wang, Nan Yang, Furu Wei,
Baobao Chang, and Ming Zhou. Gated self-matching net-
works for reading comprehension and question answering.
In ACL, volume 1, pages 189–198, 2017.

[Wang et al., 2018] Hongwei Wang, Fuzheng Zhang, Xing
Xie, and Minyi Guo. Dkn: Deep knowledge-aware net-
work for news recommendation. In WWW, pages 1835–
1844, 2018.

[Xue et al., 2017] Hong-Jian Xue, Xinyu Dai, Jianbing
Zhang, Shujian Huang, and Jiajun Chen. Deep matrix
factorization models for recommender systems. In IJCAI,
pages 3203–3209, 2017.

[Zhang et al., 2016] Fuzheng Zhang, Nicholas Jing Yuan,
Defu Lian, Xing Xie, and Wei-Ying Ma. Collaborative
knowledge base embedding for recommender systems. In
KDD, pages 353–362, 2016.

[Zhang et al., 2017] Jiani Zhang, Xingjian Shi, Irwin King,
and Dit-Yan Yeung. Dynamic key-value memory networks
for knowledge tracing. In WWW, pages 765–774, 2017.

[Zhou et al., 2018a] Guorui Zhou, Na Mou, Ying Fan, Qi Pi,
Weijie Bian, Chang Zhou, Xiaoqiang Zhu, and Kun Gai.
Deep interest evolution network for click-through rate pre-
diction. arXiv preprint arXiv:1809.03672, 2018.

[Zhou et al., 2018b] Guorui Zhou, Xiaoqiang Zhu, Chenru
Song, Ying Fan, Han Zhu, Xiao Ma, Yanghui Yan, Junqi
Jin, Han Li, and Kun Gai. Deep interest network for click-
through rate prediction. In KDD, pages 1059–1068, 2018.

[Zhu et al., 2017] Yu Zhu, Hao Li, Yikang Liao, Beidou
Wang, Ziyu Guan, Haifeng Liu, and Deng Cai. What to
do next: Modeling user behaviors by time-lstm. In IJCAI,
pages 3602–3608, 2017.

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

3065


