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Abstract

Minimum vertex cover (MinVC) is a prominent
NP-hard problem in artificial intelligence, with
considerable importance in applications. Local
search solvers define the state of the art in solv-
ing MinVC. However, there is no single MinVC
solver that works best across all types of MinVC
instances, and finding the most suitable solver for
a given application poses considerable challenges.
In this work, we present a new local search frame-
work for MinVC called MetaVC, which is highly
parametric and incorporates many effective local
search techniques. Using an automatic algorithm
configurator, the performance of MetaVC can be
optimized for particular types of MinVC instances.
Through extensive experiments, we demonstrate
that MetaVC significantly outperforms previous
solvers on medium-size hard MinVC instances, and
shows competitive performance on large MinVC
instances. We further introduce a neural-network-
based approach for enhancing the automatic config-
uration process, by identifying and terminating un-
promising configuration runs. Our results demon-
strate that MetaVC, when automatically configured
using this method, can achieve improvements in the
best known solutions for 16 large MinVC instances.

1 Introduction

Given an undirected graph G = (V, E)), a vertex cover is a
set of vertices S C V, such that each edge e € E has at least
one endpoint in S. The problem of minimum vertex cover
(MinVC) is to find a vertex cover of minimum size in a given
undirected graph.

MinVC is a prominent problem in artificial intelligence,
combinatorial optimization and graph theory, with a broad
range of real-world applications in feature selection [Xie and
Qin, 2018], network security [Cai er al., 2017] and sensor
networks [Kavalci et al., 2014]. In computational theory,
MinVC is a widely studied NP-hard problem, whose opti-
mal solutions are known to be hard to approximate; specifi-
cally, it is NP-hard to approximate the optimal solutions for
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MinVC within any factor smaller than 1.3606 [Dinur and
Safra, 2005]. MinVC is closely related to the maximum inde-
pendent set problem [Lamm er al., 2017; Chang et al., 20171,
which has many important real-world applications.

Because of the practical importance of MinVC, many
MinVC solvers [Akiba and Iwata, 2016; Cai et al., 2017]
have been proposed. Due to the NP-hardness of the problem,
much of the research on solving MinVC is focused on heuris-
tic algorithms, including construction heuristics [Khalil et al.,
2017; Xu et al., 2018] and local search [Richter et al., 2007;
Ma et al., 2016b; Cai et al., 2017; Friedrich et al., 2017;
Weise et al., 2019]. Local search approaches are able to
find vertex cover with much smaller size than construction
approaches, and have been studied particularly intensely, re-
sulting in 3 state-of-the-art local search solvers for MinVC:
NuMVC [Cai et al., 2013], TwMVC [Cai et al., 2015] and
FastVC2+p [Cai et al., 2017]. Also, local search approaches
are known to be effective in solving other NP-hard problems
in graph theory [Pullan and Hoos, 2006; Fan et al., 2019].

However, currently there is no single solver that achieves
good performance across all types of MinVC instances. From
our experiments with several state-of-the-art MinVC solvers,
described in Tables 1-4, NuMVC and TwMVC perform much
worse than FastVC2+p for solving large instances, while
FastVC2+p shows much worse performance than NuMVC
and TwMVC for solving medium-size hard instances.

It is well known that different types of MinVC instances
are best solved using different techniques; nevertheless, cur-
rent state-of-the-art MinVC solvers only incorporate a lim-
ited number of algorithmic strategies. To address this issue,
Khalil et al. have recently used reinforcement learning to di-
rectly learn a suitable MinVC construction algorithm for each
benchmark, resulting in a MinVC solver called S2V-DON
[Khalil et al., 2017]. However, their empirical results only
cover graphs with up to 1200 vertices, and in practice there
remains a significant performance gap between S2V-DQON and
state-of-the-art MinVC solvers.

A promising algorithm design paradigm dubbed program-
ming by optimization (PbO) [Hoos, 2012] urges algorithm
developers to significantly expand the design space of an al-
gorithm under development, to actively consider design al-
ternatives and to expose parameters. PbO-based approaches



Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

have shown effectiveness in many NP-hard problems, e.g.,
propositional satisfiability [KhudaBukhsh et al., 2016]. To
our best knowledge, there is no previous work applying the
idea of PbO to MinVC solving.

In this work, we endeavour to design a more effective and
robust local search solver for MinVC, with the goal of ad-
vancing the state of the art in MinVC solving. Our main con-
tributions are as follows.

First, following the PbO paradigm, we propose a rich and
flexible local search framework for MinVC called MetaVC,
which is highly parametric. MetaVC is a meta-solver, which
provides a top-level design, where each key function is an
abstraction and can be instantiated with a concrete function.

Different from previous local-search-based MinVC solvers
that apply the same technique to any given instance, MetaVC
incorporates various techniques that are automatically cus-
tomized and combined, using an algorithm configurator, for
effectively solving MinVC instances. Extensive experiments
show that MetaVC performs much better than NuMVC and
TwMVC on medium-size hard instances, indicating the ef-
fectiveness of the MetaVC framework. In addition, MetaVC
achieves competitive performance compared to FastVC2+p
on large MinVC instances.

Second, to improve the performance of MetaVC on large
MinVC instances, we introduce a neural-network-based ap-
proach to enhance automatic configuration. During auto-
matic configuration, we use a neural network model to iden-
tify and terminate unpromising runs. Intuitively, this can save
much time and explore many configurations within a given
time budget. We use this approach to configure MetaVC
on large instances; the resulting configuration of MetaVC,
dubbed MetaVC2, significantly outperforms FastVC2+p on
nearly all instances. Notably, MetaVC2 can improve the best
known solutions for 16 large MinVC instances, further con-
firming the effectiveness of the MetaVC framework.

2 Preliminaries

An undirected graph G = (V| E) is defined by a vertex set V'
and an edge set £ C V' x V. For an edge e = {v, u}, where
v,u € V, v and u are endpoints of e. Given an undirected
graph G = (V, E), the problem of minimum vertex cover
(MinVC) is to find a subset S € V such that every edge in £
has at least one endpoint in S.

For MinVC, a candidate solution C' is a subset of the ver-
tex set V. Given a candidate solution C, an edge e € F is
covered by C' if at least one endpoint e belongs to C', and un-
covered otherwise; the state of a vertex v € V is modelled by
a Boolean variable: True indicates v € C, and Fualse means
v ¢ C. For a vertex v € C, the loss of v is the number (or
the total weight, when using an edge weighting scheme) of
covered edges that would become uncovered by removing v
from C'. For a vertex v ¢ C, the gain of v is the number (or
the total weight, when using edge weighting) of uncovered
edges that would become covered by adding v into C'. The
age of a vertex v is the number of search steps since the last
change of v’s state. The degree of a vertex v is the number of
edges that have v as an endpoint.

Algorithm 1 The pseudo-code of MetaVC framework
Input: graph G = (V, E)
Output: vertex cover of G

1 if performPreProcess then

2 | run pre-processing techniques on graph G;

3 generate the initial vertex cover C via initConstruct();
4+ C*:=0C,

5 while no termination criterion is met do

6 if no uncovered edge exists then

7 c*r.=C,

8 remove a vertex with the smallest loss from C);
9 continue;

10 if performReConstruct then
1 if with probability prob_rc then
12 C := ReConstruct(C),

L continue;

14 if performBMS then S := filterBMS(C);

15 else S :=C;

16 v := pickRmVertex(),

i C:=C\{v};

18 e := pickUncovEdge(),

19 u := pickAddVertex(e);

2 C:=CU{u};

21 if performEdgeWeight then

2 L run edge weighting scheme edgeWeight();

23 return C*;

3 Meta Local Search Framework for MinVC

In this section, we present MetaVC, our new local search
framework for solving MinVC. Different from existing
MinVC solvers, which apply the same technique to any given
instance, MetaVC is a novel algorithmic framework that is
highly parametric and includes many effective algorithmic
techniques for MinVC in its design space. As a result of this,
MetaVC can achieve state-of-the-art performance for differ-
ent types of MinVC instances when using effective parameter
settings and choices of algorithmic components.

The top-level design of MetaVC is comprised of three es-
sential phases (see also Algorithm 1): pre-processing, con-
struction and search. In pre-processing, the given graph is
simplified. In construction, an initial vertex cover is gener-
ated to obtain a good starting point for the subsequent local
search process. In the search phase, MetaVC conducts local
search to iteratively optimize the vertex cover.

3.1 Pre-processing Phase

Effective pre-processing techniques can considerably sim-
plify the given graph and thus reduce the search space, which
renders the given instance easier [Cai ef al., 2017]. To boost
performance, MetaVC integrates an effective pre-processing
component in the beginning (Lines 1-2 in Algorithm 1).

The activation of the pre-processing component is con-
trolled by a Boolean parameter performPreProcess: if
performPreProcess=True, the pre-processing component is
called. In particular, MetaVC employs the pre-processing
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technique used by FastVC2+p, which consists of four reduc-
tion rules [Cai et al., 2017].

3.2 Construction Phase

The construction component plays a critical role in MinVC
solvers; a good initial solution can lead to performance im-
provements [Khalil ez al., 2017]. To make construction effi-
cient, MetaVC incorporates two simple yet effective construc-
tion methods, resulting in 2 instantiations of the construction
component initConstruct (Lines 3—4 in Algorithm 1).

(1) Gain-based method: Starting with an empty vertex set
C, repeat adding a vertex v ¢ C with the greatest gain
to C, until C' becomes a vertex cover.

(2) Degree-based method: Starting with an empty vertex
set C, repeat adding a vertex v ¢ C with the greatest
degree to C, until C' becomes a vertex cover.

3.3 Search Phase

The search phase is the most important component of all
local-search-based MinVC solvers. In the search phase,
MetaVC solves MinVC by iteratively tackling the associated
decision problem (Lines 5-22 in Algorithm 1). The general
scheme of the search phase is as follows: whenever a ver-
tex cover of size n is found, one vertex is removed, and then
MetaVC continues to search for a vertex cover of size n — 1.

For solving the decision problem, MetaVC employs an it-
erative method. In each iteration, MetaVC exchanges a pair
of vertices: given the current vertex cover C, a vertex v € C'
is removed from C, and a vertex u ¢ C' is added to C. The
heuristics used to determine the vertex v to be removed and
the vertex u to be added are crucial for this procedure.

To diversify the search process, we use a reconstruc-
tion mechanism ReConstruct in the beginning of each
iteration (Lines 10-13 in Algorithm 1). The activa-
tion of ReConstruct is controlled by a Boolean param-
eter performReConstruction and a probability prob_rc.
If performReConstruction=True and with probability
prob_rc, ReConstruct works as follows: given the current
vertex cover C, t vertices originally in C' are removed from
C; then the ¢ vertices with the greatest gains are selected from
V '\ C (the set of vertices previously not in C) and added to
C (where t is an integer-valued parameter).

Additionally, MetaVC invokes an edge weighting scheme
(Lines 21-22 in Algorithm 1) after the exchange step, to fur-
ther strengthen diversification.

Heuristics for Selecting the Vertex to be Removed

To achieve a good balance between the time complexity and
the quality of the selected vertex (i.e., the loss value), MetaVC
performs a filter process based on the BMS heuristic (fil-
terBMS) [Cai er al., 2017] before the greedy selection (pick-
RmVertex). The activation of filterBMS is depended on a
Boolean parameter performBMS. If activated, filterBM'S will
filter the vertices in the current vertex cover C' via BMS!
[Cai et al., 20171, resulting in a smaller candidate vertex set

"Due to the page limit, please refer to the literature [Cai et al.,
2017] for details of the BMS heuristic.
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S C C; otherwise, S is the same as C. Then pickRmVer-
tex selects a vertex v € S to be removed from S. MetaVC
implements 3 instantiations of pickRmVertex:

(1) Select a vertex v € S with the smallest loss, ties broken
for vertices with higher age.

(2) Select a vertex v € S with the smallest loss, ties broken
uniformly at random.

(3) Select a vertex based on configuration checking [Cai er
al., 2013].

Heuristics for Selecting the Vertex to be Added

For selecting the vertex to be added to the current candidate
solution, existing state-of-the-art MinVC solvers usually se-
lect a vertex from an uncovered edge. Following this ap-
proach, MetaVC also selects a vertex to be added from an
uncovered edge (pickUncovEdge). Different from existing
solvers, which randomly select an uncovered edge, we de-
veloped a new approach, based on edge weighting, and in-
tegrated it into the design space of MetaVC. In this work,
MetaVC supports 2 instantiations of pickUncovEdge:

(1) Select an uncovered edge uniformly at random.

(2) If the edge weighting scheme is activated, select an
uncovered edge according to a probability distribution,
with probability proportional to the edge weight.

After that, MetaVC selects the vertex to be added from the
uncovered edge e (pickAddVertex); there are 3 instantiations
of pickAddVertex:

(1) Select a vertex u in e with the greatest gain, ties broken
for vertices with higher age.

(2) Select a vertex u in e with the greatest gain, ties broken
uniformly at random.

(3) Select a vertex based on a tabu method [Cai et al., 2010].

Edge Weighting Schemes

Inspired by the success of edge weighting schemes [Cai et
al., 2013; Cai et al., 2015] in MinVC solving, we also im-
plemented edge weighting (edgeWeight) in MetaVC. In this
work, MetaVC supports 2 instantiations of edgeWeight:

(1) An additive edge weighting scheme [Cai et al., 2015].

(2) A new multiplicative edge weighting scheme, inspired
by the clause weighting scheme used in the well-known
SAT solver, SAPS [Hutter et al., 2002].

3.4 Automatic Configuration Process

MetaVC is a highly parametric framework and can be con-
figured to instantiate many novel local search solvers for
MinVC. In particular, the parameters and the components of
MetaVC described in Sections 3.1-3.3 are configurable, and
their settings can be automatically determined by a general-
purpose algorithm configurator.

To maximize performance for a given class of bench-
mark instances, we used a state-of-the-art automatic algo-
rithm configurator called SMAC [Hutter et al., 2011] to con-
figure MetaVC. The full configuration space (i.e., the search
space for SMAC) and the default configuration (i.e., the start-
ing point for SMAC) are described online.?

*https://github.com/chuanluocs/MetaVC
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Graphs MetaVC NuMvC TwMVC FastVC2+p
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MANN_a81 2221 151877.;7; 27541(.)207; 29 1357(;7; 3600%78

Table 1: Results for MetaVC, NuMVC, TwMVC and FastVC2+p on
the DIMACS-HARD benchmarks. For each instance, entries in the
VC™ column marked with an asterisk (‘*”) indicate that the best
known vertex cover size is known to be provably optimal. For the
brock instance family, each solver was evaluated with its optimized
configuration trained on 2 instances (brock400_4 and brock400_4).
For other instances, each solver was evaluated with its optimized
configuration trained on a single instance (MANN_a45).

Following the recommend protocol [Hutter et al., 20171,
we utilized SMAC to optimize solution quality — here, size
of the vertex cover; we allowed a time budget of 2 days for
the entire configuration process, and used a cutoff time of
300 CPU seconds for each solver run during the configura-
tion process. For each training set of instances, we conducted
25 independent runs of SMAC, resulting in 25 optimized con-
figurations of MetaVC. Next, each of the resulting configu-
rations was evaluated on all training instances. Finally, the
configuration with the best solution quality (i.e., the lowest
average size of the found vertex cover across all training in-
stances) was chosen as the final result.

3.5 Experimental Setup

To study the performance of the MinVC solvers considered in
this work, we conducted extensive experiments and analyzed
the results thus obtained. Here we introduce the benchmarks,
the MinVS solvers and our evaluation methodology.

For our experiments, we chose 3 prominent benchmarks,
which have been widely used in previous work on MinVC
[Cai et al., 2015; Cai et al., 2017; Ma et al., 2016a; Wagner
etal., 2017].

e DIMACS-HARD: The 8 hardest instances from the DI-
MACS benchmark,?> which is taken from the the Second
DIMACS Challenge Test Problems.

e BHOSLIB-HARD: The 15 hardest instances from the
BHOSLIB benchmark,* generated in the hardest area of
model RB [Xu et al., 2007].

3http://Ics.ios.ac.cn/~caisw/Resource/DIMACS %
20complementary%?20graphs.tar.gz

*http://sites.nlsde.buaa.edu.cn/~kexu/benchmarks/
graph-benchmarks.htm
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Table 2: Results for MetaVC, NuMVC, TwMVC and FastVC2+p on
the BHOSLIB-HARD benchmark. Each instance in this set has a
hidden optimal vertex cover, whose size is indicated in the VC*
column and marked with an asterisk (‘*”). For all instances, each
solver was evaluated using the optimized configuration trained on
the 5 instances shown in the upper part of the table, in italics.

* REAL-WORLD-HARD: The 31 hardest instances
from the REAL-WORLD benchmark,” which is com-
prised of all undirected simple graphs (not including DI-
MACS and BHOSLIB graphs) from the Network Data
Repository [Rossi and Ahmed, 2015].

To configure MetaVC, we needed to construct a training set
for each benchmark. For DIMACS-HARD, BHOSLIB-HARD
and REAL-WORLD-HARD, we selected 3, 5 and 12 instances,
respectively.® The training instances for each benchmark are
indicated in ifalics and shown in the upper parts of Tables 1
and 2 as well as the whole of Table 3. The detailed procedures
for selecting training instances are described online.”

We selected 3 state-of-the-art local search MinVC solvers
as the competitors to our approach. NuMVC [Cai et al., 2013]
and TwMVC [Cai et al., 2015] are the best solvers currently
known for solving medium-size hard MinVC instances, such
as DIMACS-HARD and BHOSLIB-HARD. FastVC2+p [Cai
et al., 2017] is the best solver currently known for solving
large-sized MinVC instances, such as REAL-WORLD-HARD.

Shttp://Ics.ios.ac.cn/~caisw/Resource/realworld%20graphs. tar.
gz

®As reported in the literature [Cai et al., 2015], with respect to
DIMACS-HARD, the configuration used for the brock instances is
different from those used for the C and MANN instances. Hence, we
separately configured MetaVC on the brock instances.
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Graphs MetaVC2 MetaVC NuMVvC TwMVC FastVC2+p
Instance Name Ve* min (gvg) min (ayg) min (ayg) min (a_vg) min (ayg)
time time time time time
— ; 554320 (554346.98) 354530 (354582.20) 560061 (360166.87) 579584 (380311.25) 555029 (355079.56)
inf-roadNet-PA™ 555046 320733 353597 133830 3599.62 460.39
. ssissg  JBISSE(BISSBO00)  3BISSS(38ISS800) 381559 (38IS63.60) 381560 (381S6244) 381558 (381558.40)
se-msdoor 42.88 311.35 1530.07 3086.87 787.99
‘ b sio 51238 (51240.06) 51239 (51240.90) 51241 (51243.93) 51238 (51244.95) 51239 (51240.59)
se-nasasr - 1056.52 1188.29 2602.79 1477.46 788.41
. 89232 (89234.12) 89223 (89224.66) 89216 (89217.58) 89226 (89230.04) 89227 (89230.19)
se-phustki 3 89217 1195.98 1208.97 277371 623.05 350.75
iveioumnal 1563003 1968905 (1868910.32) 1868007 (1868910.60) 1875974 (1878644.78) N/A (N/A) 1868916 (1868918.17)
soc-tivejourna 1330.85 2162.63 3599.57 N/A 70.17
- 4986 (4986.00) 4986 (4986.41) 4986 (4986.00) 4986 (4986.73) 4986 (4986.10)
socfb-CMU 4986 8.64 688.20 441.86 462.51 775.75
oR 36547 36547 (36547.00) 36549 (36550.08) 36555 (36558.88) 36562 (36568.78) 36547 (36548.33)
socfb- 340.18 1226.69 2038.75 2205.01 904.39
N . 15221 (15222.41) 15222 (15223.60) 15223 (15226.42) 15227 (15230.47) 15222 (15223.72)
socfb-UCLA 15222 983.15 1067.07 1520.18 1907.70 808.39
13230 (13230.03) 13230 (13231.67) 13231 (13233.00) 13233 (13236.05) 13230 (13230.98)
socfo-UConn 13230 751.81 1189.18 1397.86 1834.57 725.68
‘ 414515 (414516.06) 414515 (414515.95) 414600 (414718.73) 414688 (414606.31) 414524 (414527.02)
web-it-2004 414507 1024.03 1260.80 1552.27 3058.27 717.16
2652 (2652.00) 2652 (2652.00) 2651 (2651.87) 2652 (2652.00) 2652 (2652.00)
web-webbase-2001 2651 <0.01 0.10 132.98 1.85 <0.01
o 648204 (648294.00) 648294 (648296.36) 649192 (649246.29) N/A (N/A) 648302 (648312.56)
web-wikipedia2009 648294 228.54 1680.80 1831.47 N/A 407.67

Table 3: Results for MetaVC2, MetaVC, NuMVC, TwMVC and FastVC2+p on the 12 training instances from REAL-WORLD-HARD. For
each instance, we use an asterisk (*) in the ‘Instance Name’ column to indicate that one of the solvers found a smaller vertex cover than the
best known results from the literature. For all training instances, each solver was evaluated with its optimized configuration trained on the 12
training instances shown in this table. We use ‘N/A’ to indicate cases where none of the runs of a specific solver were successful.

The source code of NuMVC is publicly available,” and the
sources for TwMVC and FastVC2+p were provided by their
authors. NuMVC, TwMVC and FastVC2+p have 2, 3 and 1
configurable parameters, respectively.

In this work, all our experiments were carried out on a
cluster of computers, where each computer is equipped with
32 Intel Xeon E5-2683 CPUs and 94 GB memory, running
the operating system of CentOS 7.6.1810. For each solver,
we performed 100 independent runs per instance, with a cut-
off time of one hour per run. For each instance, we consid-
ered the size of the optimal (or previously best known) ver-
tex cover (‘VC**).8 Following previous work on medium-
size hard instances [Cai et al., 20151, for each instance from
DIMACS-HARD and BHOSLIB-HARD, we report the success
rate (‘succ rate’), i.e., the number of successful runs divided
by the total number of runs, where a run is considered suc-
cessful if a vertex cover with the size of ‘ VC*’ is found, and
the running time (‘time’) measured in CPU seconds required
for finding a cover of size VC*, averaged over total runs. Fur-
thermore, following previous work on large instances [Cai et
al., 20171, for each instance from REAL-WORLD-HARD, we
report the minimum (‘min’) and average (‘avg’) cover size
found by the respective solver over total runs, and the run-
ning time (‘time’) measured in CPU seconds required for ob-
taining the final solutions averaged over total runs. For each
solver, if there are no successful runs, we report ‘N/A’. For
each instance, we use boldface to indicate the best results.

"http://lcs.ios.ac.cn/~caisw/Code/NuMVC_v2015.8.zip

8For DIMACS-HARD and BHOSLIB-HARD, we used the VC*
values reported in the literature [Cai et al,, 2015]. For REAL-
WROLD-HARD, we collected the VC™* values from a number of pre-
vious studies [Ma et al., 2016a; Ma et al., 2016b; Cai et al., 2017].
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3.6 Experimental Results

The results from our experiments with MetaVC and all com-
petitors on all benchmarks are reported in Tables 1-4. The
empirical comparison is fair, because for each benchmark,
all competitors were configured using SMAC with the same
configuration protocol. The optimized configurations for
MetaVC are shown in Table 5 and can be found online, along
with the optimized configurations for the competitors.?

On the medium-size hard benchmarks (i.e., DIMACS-
HARD and BHOSLIB-HARD), MetaVC stands out as the
best solver and performs much better than all other
solvers. In particular, on 4 difficult instances in DIMACS-
HARD (brock800_4, brock800_2, C2000.9 and MANN_a81),
MetaVC achieved much higher success rates than its com-
petitors; for example, on instance brock800_2, we observed
a success rate of 67% for MetaVC, compared to 2%, 5%
and 0% for NuMVC, TwMVC and FastVC2+p, respectively.
On the hardest family within BHOSLIB-HARD, frb59-26,
MetaVC performed best on 4 out of 5 instances. These re-
sults clearly indicate that MetaVC advances the state of the
art in solving medium-size hard MinVC instances.

As seen in Tables 3 and 4, MetaVC and FastVC2+p sig-
nificantly outperformed the other two solvers on the large
real-world instances. These results demonstrate that MetaVC
achieves performance competitive to that of FastVC2+p on
large instances. For almost all other, easy instances from the
original DIMACS, BHOSLIB and REAL-WORLD bench-
marks (not included in DIMACS-HARD, BHOSLIB-HARD
and REAL-WORLD-HARD), MetaVC always found the best
known solutions with a success rate of 100%.°

°In fact, it failed to do so only for a single instance, socfb-
Stanford3 from REAL-WORLD, for which the best solution qual-
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Graphs MetaVC2 MetaVC NuMvC TwMVC FastVC2+p
. min (avg) min (avg) min (avg) min (avg) min (avg)
Instance Name ve time time time time time
) " 1525352 (11525847.64) 11527313 (11527749.68) 12238416 (12238420.60) N7A (NJA) 11527505 (11527723.35)
inf-road-usa™ 11527630 3496.00 3569.33 29.25 N/A 2706.00
o . 999854 (999911.64) 1000347 (1000500.03) 1010709 (1013890.06) N/A (N/A) 1001052 (1001103.34)
inf-roadNet-CA™ 1001065 3380.57 349274 3599.80 N/A 888.15
y 656754 856754 (856754.00) 856754 (856754.00) 856798 (856808.74) 856996 (857067.75) 856754 (856754.01)
se-idoor 15.62 110.05 3533.05 3593.76 606.23
20763 207674 (207676.66) 207674 (207678.02) 207724 (20773631) 207688 (207702.96) 207671 (207676.19)
Sepw 1183.57 2095.84 203.48 2359.07 2280.41
hivseel® 117246 116849 (116871.15) 116922 (116945.75) 117129 (117207.61) 117332 (117371.38) 117224 (117259.71)
sc-shipsec 3129.61 3472.12 3438.61 3178.57 3465.81
L 146768 (146787.57) 146912 (146967.64) 147091 (147129.83) 147055 (147091.11) 147028 (147046.51)
sc-shipsecs 147043 3366.05 3495.28 3568.67 257351 3239.04
edelicions® o541 85358 (85372.75) 85368 (85382.47) 85518 (85558.60) 85474 (85528.86) 85336 (85340.26)
soc-delicious 2801.96 2894.37 3056.06 199.72 1232.35
. 2170773 (2170854.66) 2171860 (2171951.40) N/A (N/A) N/A (N/A) N/A (N/A)
soc-orkut™ 2171200 3350.66 356337 N/A N/A N/A
venokeet 843377 843348 (843355.56) 843364 (843374.87) 844296 (844338.42) N/A (N/A) 843375 (843380.55)
soc-pokec § 322325 3288.76 1055.88 N/A 1686.59
. 17209 (17209.91) 17210 (17212.98) 17213 (1721626) 17218 (17221.00) 17209 (17211.48)
socfb-Berkeley13 17210 774.61 112234 1636.39 2020.29 716.95
. 23313 (23313.97) 23314 (23317.30) 23317 (23323.67) 23322 (23329.57) 23313 (23315.78)
socfb-Indiana 23314 926.32 1685.76 207278 1879.88 1358.08
, . 31158 (31159.82) 31161 (31164.72) 31168 (31178.93) 31181 (31190.28) 31159 (31162.35)
socfb-Pennd4 3ol 1201.90 151471 1970.55 1803.34 1362.67
. 28164 (28165.60) 28166 (28170.83) 28170 (28175.56) 28180 (28188.93) 28166 (28167.54)
socfb-Texas34 28165 908.47 175138 251891 1926.83 1251.17
, 11261 (11261.00) 11261 (11262.08) 11261 (11262.74) 11262 (11264.36) 11261 (11261.56)
socfb-UCSB37 11261 52.08 42238 1147.20 1878.33 043.51
P 7305 27303 (27303.90) 27305 (27308.52) 27300 (27319.16) 27321 (27326.52) 27304 (27307.18)
soctb- e 1046.48 1855.44 2144.79 1978.55 1455.44
. 24089 (24090.48) 24092 (24094.00) 24096 (24103.25) 24101 (24109.15) 24090 (24092.46)
socfb-Ulllinois 24091 1228.43 1628.33 2059.37 2019.51 1468.54
. 18382 (18382.93) 18383 (18384.89) 18386 (18389.55) 18390 (18394.67) 18383 (18384.08)
socfb-Wisconsin87 18383 352.19 1564.20 1554.29 2099.69 797.49
. 74621 (74630.29) 74621 (74629.39) 74691 (T474137) 74697 (74714.98) 74626 (74631.21)
tech-RL-caida 74593 2758.99 2968.13 3488.23 1085.94 3180.03
bt kit 25163 525183 (525196.02) 525186 (525200.99) 525924 (525957.09) 526576 (526813.02) 525247 (525260.18)
cchras-skitter 2737.99 3322.72 1054.60 3599.31 3367.72

Table 4: Results for MetaVC2, MetaVC, NuMVC, TwMVC and FastVC2+p on the 19 testing instances from REAL-WORLD-HARD. For each
testing instance, we use an asterisk (*) in the ‘Instance Name’ column to indicate that one of the solvers found a smaller vertex cover than the
best known results from the literature. For all testing instances, each solver was evaluated with its optimized configuration trained on the 12
training instances shown in Table 3. We use ‘N/A’ to indicate cases where none of the runs of a specific solver were successful.

4 A Neural-Network-based Approach for
Enhancing Automatic Configuration

The comparison between MetaVC and FastVC2+p in Ta-
bles 3 and 4 indicates that there is still room for improving
the performance of MetaVC on solving large real-world in-
stances; this motivated us to explore better configurations of
our MetaVC framework. The starting point for our work in
this area was the observation that during automatic configu-
ration, much time could be wasted on evaluating bad config-
urations of the given target algorithm [Domhan et al., 2015].
Here, we propose a neural-network-based method for identi-
fying and terminating unpromising target algorithm runs dur-
ing the automatic configuration process.

4.1 LSTM-Network-based Predictive Model

Since MetaVC is able to output its current best solution qual-
ity at any time, for each solver run, we can observe the time

ity is 8517. Although MetaVC, NuMVC, TwMVC and FastVC2+p
all failed to achieve that solution quality, all of them found a ver-
tex cover of size 8518 with the success rate of 100%. Furthermore,
MetaVC2, which will be presented in Section 4, was able to reach the
best solution quality for this instance with a success rate of 100%.
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series vector y1.,, where y; (1 < 4 < p) denotes the solution
quality output by MetaVC at time <. In this work, we record
one solution quality value per CPU second. The main idea is
that, using the observed time series vector y;.,, we can build
a predictive model for solution quality y, (¢ > p); if y, in the
current run is significantly worse than the value in previous
runs, the current run is identified as unpromising.

As the predictive model will be deployed in a real-time en-
vironment, we need to train it fast. Long short-term memory
(LSTM) networks [Hochreiter and Schmidhuber, 1997] sat-
isfy this criterion and have been used successfully for time
series prediction [Schmidhuber e al., 2003]. To keep training
time at a minimum, we use a LSTM-based model with low
network complexity. In particular, we use only two layers,
where the first is a LSTM layer, while the second is a dense
layer. Our LSTM-based model minimizes mean squared error
using the Adam optimizer [Kingma and Ba, 2015].

We used our LSTM-based model to enhance automatic
configuration in Section 3.4. During automatic configuration,
for each training instance, the entire time series vector yj.p
observed in the best solver run is recorded and updated as
needed. Whenever SMAC performs a solver run, our model is
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Benchmark Optimized Configuration

brock-HARD

performPreProcess=True, initConstruct=2, performReConstruct=True, prob_rc=0.0028421872317207584, t=100,

performBMS=False, pickRm Vertex=3, pickUncovEdge=2, pickAdd Vertex=1, performEdge Weight=True, edge Weight=2

DIMACS-HARD

performPreProcess=False, initConstruct=1, performReConstruct=False, performBMS=False, pickRm Vertexr=1,

pickUncovEdge=2, pickAdd Vertex=1, performEdge Weight=True, edge Weight=1

BHOSLIB-HARD

performPreProcess=True, initConstruct=2, performReConstruct=False, perform BMS=False, pickRm Vertex=2,

pickUncovEdge=1, pickAddVertex=3, tabu_tenure=5, performEdge Weight="True, edge Weight=1

REAL-WORLD- performPreProcess=True, initConstruct=2, performReConstruct="True, prob_rc=3.908659583029911E-5, t=84,

HARD performBMS=True, bms_k=633, pickRm Vertexr=2, pickUncovEdge=1, pickAdd Vertex=2, performEdge Weight=False
Table 5: The optimized configurations of MetaVC for all benchmarks.

Benchmark Optimized Configuration

REAL-WORLD- performPreProcess=True, initConstruct=2, performReConstruct=True, prob_rc=3.0886947578801404E-5, t=76,

HARD performBMS=True, bms_k=720, pickRm Vertex=1, pickUncovEdge=1, pickAdd Vertex=2, performEdge Weight=False

Table 6: The optimized configuration of MetaVC2 for the REAL-WORLD-HARD benchmark.

activated simultaneously. During the current solver run, our
model is trained every ¢ CPU seconds, using the latest ¢ ob-
servations; at time j, our model predicts the solution quality
yj+r expected r CPU seconds later; if y;, < (14 0) - Yitr
(recalling that MinVC is a minimization problem), the current
run is allowed to continue; otherwise, the current MetaVC run
is identified as unpromising and terminated immediately.
Svegliato et al. proposed a performance predictor based
on nonlinear regression to stop anytime algorithms at a time
point suitable for obtaining good running time and solution
quality [Svegliato e al., 2018]. In contrast, our predictive
model is based on an LSTM network and aims to enhance
automatic algorithm configuration, in order to find better con-
figurations of a given target algorithm within limited time.

4.2 Empirical Evaluation

To show the effectiveness of our LSTM-based approach,
we used the enhanced automatic configuration method (de-
scribed above) to configure MetaVC on the REAL-WORLD-
HARD benchmark.'® Besides incorporating our LSTM-based
approach, we used the same automatic configuration process
as described in Section 3.4. The version of MetaVC with
the optimized configuration obtained from our enhanced au-
tomatic configuration method is denoted as MetaV(C2; it is
shown in Table 6 and also available online.?

For our empirical evaluation, we used the evaluation
methodology and execution environment described in Sec-
tion 3.5. Performance results for MetaVC2, MetaVC and
their competitors on the REAL-WORLD-HARD benchmark
are summarized in Tables 3 and 4. It is clear that MetaVC2
significantly outperforms MetaVC and all other competitors
on the majority of the instances from REAL-WORLD-HARD.
Notably, MetaVC2 was able to improve the best known so-
lutions for 16 large MinVC instances, indicating that it can
provide substantial benefits in practice. Moreover, MetaVC2
also performs well on the other 2 benchmarks (i.e., DIMACS-
HARD and BHOSLIB-HARD); additional experimental re-
sults for MetaVC2 are available online.”

1%In this work, during the enhanced automatic configuration pro-
cess for automatically configuring MetaVC on the REAL-WORLD-
HARD benchmark (which will result in MetaVC2 for the REAL-
WORLD-HARD benchmark), T', t, r and § were set to 300, 30, 10
and 0.0001, respectively.
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5 Conclusions

In this work, we first proposed a new, highly parametric local
search framework for MinVC, dubbed MetaVC, which can
be configured to instantiate many new MinVC solvers. Af-
ter being automatically configured using an automatic algo-
rithm configurator for various benchmarks, MetaVC was able
to achieve state-of-the-art performance on medium-size hard
MinVC instances and competitive performance on large in-
stances. Then, to further improve the performance of MetaVC
on large instances, we introduced a neural-network-based ap-
proach for identifying and terminating unpromising target
algorithm runs during the configuration process. The en-
hanced configuration of MetaVC, dubbed MetaVC2, was able
to improve the best known solutions for 16 large MinVC in-
stances from the REAL-WORLD-HARD benchmark. Over-
all, our results indicate that MetaVC dramatically advances
the state of the art in MinVC solving. The implementa-
tion of MetaVC and additional information are available at
https://github.com/chuanluocs/MetaVC.

In future work, we plan to develop more sophisticated
methods for identifying and terminating unpromising target
algorithm runs, to further enhance automatic configuration.
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