How Powerful are BERTs ?



Rank Name Score QQP MNLI-m MNLI-mm

1 Facebook Al RoBERTa [:)n 88.5 67.8 96.7 92.3/89.8 92.2/91.9 74.3/90.2 90.8 90.2 98.9 88.2 89.0 487
2 XLNet Team XLNet-Large (ensemble) [:)n 88.4 67.8 96.8 93.0/90.7 91.6/91.1 74.2/90.3 90.2 89.8 98.6 86.3 90.4 475
+ 3 Microsoft D365 Al & MSR Al MT-DNN-ensemble [:)u 876 68.4 96.5 927/90.3 91.1/907 73.7/899 879 87.4 96.0 86.3 89.0 428
4  GLUE Human Baselines GLUE Human Baselines [:)u 871 66.4 97.8 86.3/80.8 92.7/926 595/804 92.0 928 912 936 959 -
+ 5 X5 ALICE large ensemble (Alibaba DAMO NLP) 86.3 68.6 952 926/90.2 91.1/906 744/90.7 88.2 87.9 957 835 80.8 439
6  Stanford Hazy Research Snorkel MeTal [:)u 832 63.8 96.2 915/885 90.1/89.7 73.1/899 876 87.2 939 809 651 399
7 XLM Systems XLM (English only) [:/J‘ 831 62.9 956 90.7/867.1 88.8/88.2 73.2/89.8 89.1 88.5 94.0 76.0 71.9 447
8  SRi=RE SemBERT [:/J‘ 82.9 62.3 946 91.2/88.3 87.8/86.7 72.8/89.8 87.6 86.3 946 84.5 65.1 42.4
9 Dangi Chen SpanBERT (single-task training) [:/J‘ 82.8 64.3 94.8 90.9/879 89.9/89.1 71.9/89.5 88.1 87.7 943 79.0 65.1 451
10 Kevin Clark BERT + BAM [:/J‘ 82.3 61.5 95.2 91.3/88.3 88.6/87.9 72.5/89.7 86.6 85.8 931 80.4 65.1 407
11 Nitish Shirish Keskar Span-Extractive BERT on STILTs [:/l‘ 82.3 63.2 94.5 90.6/876 89.4/89.2 72.2/894 86.9 85.8 92.5 79.8 65.1 28.3
12  Jason Phang BERT on STILTs [:/J‘ 82.0 62.1 94.3 90.2/86.6 88.7/88.3 71.9/89.4 86.4 85.6 927 80.1 65.1 28.3
+ 13  Jacob Devlin BERT: 24-layers, 16-heads, 1024-hidden [:/J‘ 80.5 60.9 949 89.3/85.4 87.6/86.5 72.1/89.3 86.7 85.9 927 701 65.1 396
14 Neil Houlsby BERT + Single-task Adapters [:’J‘ 80.2 59.2 94.3 88.7/84.3 87.3/86.1 71.5/894 85.4 85.0 924 71.6 65.1 2.2
15 Zhuohan Li Macaron Net-base [:’J‘ 79.7 57.6 94.0 88.4/844 87.5/86.3 T70.8/89.0 85.4 84.5 916 70.5 65.1 387
16 Linyuan Gong StackingBERT-Base [:’J‘ 78.4 56.2 93.9 88.2/83.9 84.2/82.5 T70.4/88.7 84.4 84.2 901 67.0 65.1 36.6

GLUE Benchmark Leaderboard



What will we talk about today

* Recent Highlights of BERT-like models
 XLNet and A Fair Comparison Study of XLNet and BERT

RoBERTa

SpanBERT

MT-DNN and MT-DNN with Knowledge Distillation

ERNIE
e Recent In-depth Analyses of BERT-like Models in NLP Tasks
* BERT in Argument Reasoning Comprehension Task

 BERT in Natural Language Inference Task



A Fair Comparison Study of XLNet and BERT

(XLNet Team)
Independence Assumption . .
J T ex AT exp (hg[x“ 1)Te($t])
p (Hﬂ(x)t e(:ct)) max logpy(x) = log pe(x = 1
1 1 1 g po(X) ogpo(xe | X<t) 0g ;
mgax og pe(X th og pe(x | X) ;mﬁ og Zmr exp (Hg(}'&);e(x’)) it ; ; E exp (hg(xq.+— 1) e(x'))

ﬁP Mask LM Mask LM \
e <t *

= N £ B

BERT als o oo - § . . .
M- LB | Been |[ & . [Ew ]

mem ()

I e B e W gy
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XLNet: Generalized Autoregressive Pretraining for Language Understanding
(Yang et al. CoRR abs/1906.08237)
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XLNet: Generalized Autoregressive Pretraining for Language Understanding
(Yang et al. CoRR abs/1906.08237)
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XLNet: Generalized Autoregressive Pretraining for Language Understanding
(Yang et al. CoRR abs/1906.08237)
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Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context
(Dai et al. CoRR abs/1901.02860)
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XLNet: Generalized Autoregressive Pretraining for Language Understanding
(Yang et al. CoRR abs/1906.08237)

New York is a city
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COmparISOn Of BERT and XLNEt SQuADI.1 EM F1 | SQuAD2.0 EM F1

Dev set results without data augmentation

BERT [10] 84.1 90.9 | BERTY [10] 78.98 81.77

XLNet 88.95 94,52 | XLNet 86.12 88.79
e Permutation La nguage Model Test set results on leaderboard, with data augmentation (as of June 19, 2019)

Human [27] 82.30 91.22 | BERT+N-Gram+Self-Training [10] 85.15 87.72

ATB 86.94 9264 | SG-Net 85.23 87.93
* More Data (32.89B > 3.87B)) BERT* [10] 87.43 93.16 | BERT+DAE+A0A 85.88 88.62

XLNet 89.90 95.08 | XLNet 86.35 89.13

* Transformer-XL Comparison in SQUAD

* Relative Positional Encoding

. # Model RACE  SQuAD2.0 MNLI SST-2
* Segment Recurrence Mechanism FI. EM  m/mm
| BERT-Base 643 7630 73.66 84.34/84.65 92.78
2 DAE + Transformer-XL | 65.03 79.56 76.80 84.88/84.45 92.60
3 XLNet-Base (K =7) 66.05 81.33 78.46 85.84/85.43 92.66
4 XLNet-Base (K = 6) 66.66  80.98 78.18 85.63/85.12 93.35
5 - memory 65.55 80.15 77.27 85.32/85.05 9278
6 - span-based pred 65.95 80.61 7791 85.49/85.02 93.12
7 - bidirectional data 66.34  80.65 77.87 85.31/84.99 92.66
8 + next-sent pred 66.76  79.83 7694 85.32/85.09 92.89

Ablation Study for Pure Model Comparison



A Fair Comparison Study of XLNet and BERT

(XLNet Team)
Dataset XLNet-Large XLNet-Large BERT-Large
(as in paper)  -wikibooks swikibooks * Model-I: The original BERT released by the authors
best of 3 variants
SQUADL1EM 20.0 <8 36.7 D * Model-II: BERT with whole word masking, also released by the authors
SQuADLLFS e 4t 928 (I e Model-III: Since we found that next-sentence prediction (NSP) might
SQuAD2.0 EM 86.1 85.1 82.8 (11 - . .
Q ) hurt performance, we use the published code of BERT to pretrain a new
SQuAD2.0 Fl 88.8 87.8 85.5 (1) ]
RACE 318 774 75.1 (D) model without the NSP loss
MNLI 89.8 88.4 87.3 (I)
QNLI 93.9 93.9 93.0 (I1)
QQP 91.8 91.8 91.4 (I1)
RTE 83.8 81.2 74.0 (I1I)
SST-2 95.6 94.4 94.0 (1I) .
°
e o 00 . XLNet improves performance
CoLA 63.6 65.2 63.7 (1) . .
STS-B 018 o1.1 902 (11l  XLNet-Large could be better optimized
Comparison of different models. XLNet-Large (as in paper) was trained with more data and a larger batch

size. For BERT, we report the best finetuning result of 3 variants for each dataset.

Experiment Results



RoBERTa: A Robustly Optimized BERT Pretraining Approach

(Liu et al. CoRR abs/1907.11692)

More data

Bigger Batch

Train Longer

Remove Next Sentence Prediction

Dynamically Change Mask Pattern

QNLI QQP RTE SST MRPC CoLA STS WNLI Avg
Single-task single models on dev
BERT srce 91.3 704 932  88.0 60.6  90.0
XLNet; srge 91.8 838 956 892 63.6 918 -
RoBERTa 922 86.6 964 909 68.0 924 913
Ensembles on test (from leaderboard as of July 25, 2019)
ALICE 90.7 835 952 926 68.6 91.1 80.8  86.3
MT-DNN 899 863 965 92.7 684 9l1.1 89.0 87.6
XLNet 90.3 863 968 93.0 678 916 904 884
RoBERTa 90.2 88.2 967 923 678 922 89.0 885

RoBERTa in GLUE Test



RoBERTa: A Robustly Optimized BERT Pretraining Approach
(Liu et al. CoRR abs/1907.11692)

* Dynamically Change Mask Pattern * Remove Next Sentence Prediction
. 1O /] ) a . . /] - S -2 F :
Masking SQuAD 2.0 MNLI-m SST-2 Model SQuAD 1.1/20 MNLI-m SST-2 RACE
- - - Our reimplementation (with NSP loss):
reference 76.3 84.3 92.8 SEGMENT-PAIR 00.4/78.7 84.0 929 642
: : SENTENCE-PAIR 88.7/76.2 82.9 92.1  63.0
Our reimplementation:
e ~ Our reimplementation (without NSP loss):
static . 4.3 92.5 F
“-‘tdl](,- i 78.3 84 3(_) C FULL-SENTENCES 90.4/79.1 84.7 92.5 64.8
dynamic 78.7 84.0 92.9 DOC-SENTENCES 90.6/79.7 84.7 927 656
BERT a5 88.5/76.3 84.3 928 643
XLNetg, s (K=7) —/81.3 85.8 927  66.1
XLNetg,s: (K= 6) —/81.0 85.6 934 667

* Larger Batch Size

bsz steps Ir ppl MNLI-m SST-2

256 IM  le4 399 84.7 92.7

2K 125K 7e-4 3.68  85.2 92.9 from 30K to 50K
SK 31K le-3 377 846 92.8

* Larger Byte-Pair Encoding Vocabulary




RoBERTa: A Robustly Optimized BERT Pretraining Approach
(Liu et al. CoRR abs/1907.11692)

MNLI QNLI QQP RTE SST

Single-task single models on dev

* Longer Training and Larger Trainset size BERTuwee 8000 923 913 704 932

RoBERTa 90.2/90.2 947 922 86.6 964

Ensembles on test (from leaderboard as of July 25, 2019)

Model data  bsz steps (‘S?:‘;;IO)) MNLI-m SST-2 ALICE 88.2/87.9  95.7 90.7 835 952
MT-DNN 87.9/87.4  96.0 89.9 86.3 96.5
RoBERTa XLNet 90.2/89.8 98.6 903 86.3 96.8
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 95.3 RoBERTa 90.8/90.2 989 902 882 96.7
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 80.3 95.6
+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96. 1 MRPC CoLA STS WNLI Avg
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT  sxrce 88.0 60.6  90.0 - -
with BOOKS + WIKI 13GB 256 IM  90.9/81.8 86.6 93.7 89.2 63.6 9138 - -
XL.\]EIL,\RGE 90.9 68.0 924 91.3 -
with BOOKS + WIKI 13GB 256 IM  94.0/87.8 88.4 94.4
+ additional data 126GB 2K 500K 04,5/88.8 89.8 95.6 02.6 68.6 91.1 80.8 86.3

92.7 684 91.1 89.0 876
93.0 67.8 91.6 904 884
923 67.8 922 89.0 885

Language Models are Unsupervised Multitask Learners

GPT 2.0 ROBERTa in GLUE Test
(Radford et al. ICML 2019)



SpanBERT: Improving Pre-training by Representing and Predicting Spans

(Joshi et al. CoRR abs/1907.10529)

L(football) = Lyvrm(x7) + LsBo (X4, X9, P7)

an American football game

Lxu [ xe [ xa || x| [ x5 || X || %7 [[xs |[Xo]]| xi0 || Xu][ %12 |
Transformer Encoder
tmbeadings | PL|[ P2 |[ Ps [[ Pa | [Ps || Po|[P7|[Ps |[Po|| Pro || Puu| P12 |
Embeddings . e : 11 12
+ + + + + + + + + + + +
g(r)nkl(::ddings |Super| lBowl ” 50 || was | ‘[MASK]‘ ‘[MASK]‘ |[MASK]| ‘[MASK]‘ l to l |determine” the | lchampion

Model Architecture
e Span Masking
e Span Boundary Objective

* Single-Sequence Training

CoLA SST2 MRPC  STS-B

Google BERT 593 952  88.5/84.3 86.4/88.0

Our BERT 586 939  90.1/86.6 88.4/89.1

Our BERT-1seq  63.5 948 91.2/87.8 89.0/88.4

SpanBERT 643 948 90.9/87.9 89.9/89.1
QQP MNLI QNLI RTE (Avg)
71.2/89.0 86.1/85.7 930 71.1  80.4
71.8/89.3 87.2/86.6 930 747  81.1
72.1/89.5 88.0/87.4 930 721 817
71.9/89.5 88.1/87.7 943 79.0 828

SpanBERT in GLUE Test



Multi-Task Deep Neural Networks for Natural Language Understanding

(Liu et al. Microsoft Research. CoRR abs/1901.11504 )

Task specific

layers

Shared
layers

Pr(c|X) Sim(X;, Xz) P(R|P,H)
(e.g., probability of (e.g., semantic (e.g., probability of
labeling text X by c) similarity between X, logic relationship R

Rel(Q, A)

(e.g., relevance score
of candidate answer A

Algorithm 1: Training a MT-DNN model.

and X, ) between P and H) given query Q)
i i f f
Single-Sentence Pairwise Text Pairwise Text Pairwise
Classification Similarity Classification Ranking
(e.g., CoLA, 55T-2) (e.g., STS-B) (e.g., RTE, MINLI, (e.g., QNLI)
WNLI, QQP, MRPC)

f I 1
1,: context embedding vectors, one for each token.

A

f

Transformer Encoder (contextual embedding layers)

A

[, : input embedding vectors, one each token.

A

Lexicon Encoder (word, position and segment)

i

X: a sentence or a pair of sentences

Model Architecture

Initialize model parameters © randomly.

Pre-train the shared layers (i.e.. the lexicon

encoder and the transformer encoder).

Set the max number of epoch: epoch,, ...

//Prepare the data for T tasks.

fortinl1.2.....T do

| Pack the dataset ¢ into mini-batch: D;.
end

for epoch in 1.2, ..., epochpmay do

I. Merge all the datasets:

D =DyUDsy...U Dp

2. Shuffle D

for by in D do

/by is a mini-batch of task t.

3. Compute loss : L(O) Ve
L(©) = Eq. 6 for classiﬁcation/y (y — Sim(Xj, XQ))Q
L(©) = Eq. 7 for regression
L(©) = Eq. 8 for ranking ——— | — Z P.(AT|Q)

4. Compute gradient: V(O) (Q,AT)

5. Update model: © = © — eV(O)

_ Z 1(X, ) log(P.(c| X))

end

end

Training Algorithm



Multi-Task Deep Neural Networks for Natural Language Understanding

(Liu et al. Microsoft Research. CoRR abs/1901.11504 )
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Domain Adaptation

Model CoLA|SST-2] MRPC | STS-B | QQP
8.5k | 67k | 3.7k 7k 364k

BiLSTM+ELMo+Attm L [36.0 | 90.4 |84.9/77.975.1/73.3]64.8/84.7

S“‘?'e“_‘?k Pretrain 454 | 91.3 |82.3/75.7/82.0/80.070.3/88.5

Transformer

GPT on STILTs ° 47.2 | 93.1 |87.7/83.7|85.3/84.8(70.1/88.1

BERT? \pee 60.5 | 94.9 |89.3/85.4/87.6/36.5/72.1/89.3

MT-DNNo-ine-tune 580 | 94.6 |90.1/86.4/39.5/38.872.7/89.6

MT-DNN

Human Performance

62.5 | 95.6 |91.1/88.2[89.5/88.8|72.7/89.6

|66.4 | 97.8 |86.3/80.8/92.7/92.6|59.5/80.4
MNLI-m/mm [QNLI |RTE |[WNLI |AX |Score

393k 108k |2.5k | 634

76.4/76.1 - 56.8 | 65.1 |26.5 | 70.5
82.1/81.4 - 56.0 | 534 |29.8 | 72.8
80.8/80.6 - 69.1 | 65.1 |294 | 76.9
86.7/85.9 92.7 |70.1 | 65.1 |39.6 | 80.5
86.5/85.8 93.1 |79.1 | 65.1 (394 |81.7
| 86.7/86.0 | 93.1 |81.4 | 65.1 [40.3 | 827
| 92.0/92.8 |91.2 [93.6 [959 | - [87.1

MT-DNN in GLUE Test




Improving Multi-Task Deep Neural Networks via Knowledge Distillation for

Natural Language Understanding
(Liu et al. Microsoft Research. CoRR abs/1904.09482 )

=3 Q(elX) log(P(e]X)
e ~1 2 K -
Q =avg([Q",Q%,....Q7])
) Multi-Task
Loss Function
L(8|X,6;,..67)
Back A Tk
Teacher Teacher Propagation s: t: a:
taskl | ... ... task T E {ul;r[;)
v|X, @),
Q;(¥|X.6y) Qr(vIX,6r) ;z LT
'y i A
Dataof Taskl = = oes Data of Task T
Dy Dy

Process of Knowledge Distillation

Model CoLA[SST-2] MRPC | STS-B | QQP
8.5k | 67k | 37k | 7k | 364k
BILSTM+ELMo+Att © [36.0 | 90.4 [84.9/77.9]75.1/73 3|64.8/84.7
Singletask Pretrain 454 | 913 [82.3/75.7/82.0/80.0[70.3/88.5
Transformer

GPT on STILTS ° 372 | 93.1 [87.7/83.7|85.3/84870.1/88.1
BERTL Arcr 60.5 | 94.0 [89.3/85.4/87.6/86.5(72.1/39.3
MT-DNN’ 615 | 95.6 [90.0/36.7/88.3/87.7|72.4/89.6
Snorkel MeTaL. © 63.8 | 96.2 [91.5/88.590.1/89.7|73.1/39.9
ATICE " 63.5 [ 95.2 [91.8/89.0[30.8/33.8]74.0/90.4
MT-DNNxp 65.4 [95.6 [91.1/38.2]89.6/89.0[72.7/39.6
Human Performance __ [66.4 | 97.8 86.3/30.892.7/92.6]59.5/30.4

MNLI-m/mm [QNLI [RTE |WNLI |AX [Score

393k 108k |2.5k | 634

76.4/76.1 79.8 |56.8 | 65.1 [26.5 | 70.0

82.1/814 | 87.4 |56.0 | 534 [29.8 |72.8

80.8/80.6 - 69.1 | 65.1 [294 | 76.9

86.7/85.9 92.7 170.1 | 65.1 |[39.6 | 80.5

86.7/86.0 - 75.5 | 65.1 |40.3 | 82.2

87.6/87.2 93.9 |80.9 | 65.1 |39.9 |83.2

87.9/87.4 95.7 |80.9 | 65.1 |40.7 | 83.3

$7.5/867 1960 [85.1 [ 65.1 (428 | 83.7

[ 920008 [912 [936 [959 | - 871

MT-DNN_{KD} in GLUE Test




Recent In-depth Analyses of
BERT-like Models in NLP Tasks



Probing Neural Network Comprehension of Natural Language Arguments
(Niven et al. ACL 2019)

Rank System Accuracy

1 GIST 0.712

Topic: Tax Break for Sports. 2 bleu_nlp 0.606
Additional Information: Should pro sports leagues enjoy 3 ECNU 0.604
nonprofit status? 4 NLITrans 0.590
5 Joker* 0.586

Premise (Reason): Government is already struggling to pay 6 YNU _Deep 0.583
for basic needs. 7 mingyan 0.581
And since 8 ArcNet 0.577
i 8§  UniMelb 0.577

v Warrant 0: the government isn’t required to pay for all 10 TRANSRW 0.570
the country’s needs 11 lyb3b 0.568

X Warrant 1: the government is required to pay for the 12 SNU;IDS 0.565
country’s needs 13 ArgEns-GRU 0.556

. ) ) 14 ITNLP-ARC 0.552
Claim: Sport leagues should not enjoy nonprofit. 15 YNU-HPCC 0.550
16 TakeLab 0.541

17 HHU 0.534

ARCT: Argument Reasoning Comprehension Task I8 Random baseline 0.527
19 Deepfinder 0.525

(Habernal et al. NACCL 2018) 50  ART 0.518
21 RW2C 0.500

22 ztangfdu 0.464

SemEval-2018 Task 12: The Argument Reasoning Comprehension Task
(Habernal et al. SemEval-2018)



Probing Neural Network Comprehension of Natural Language Arguments

(Niven et al. ACL 2019)

[ Softmax ]

e e |

J

. » -

BERT

Ep® | | Eser)|| E1W

Dev Test

Mean Mean Median Max
Human (trained) 0.909 £ 0.11
Human (untrained) 0.798 £ 0.16
BERT (Large) 0.701 =0.05 | 0.671 £ 0.09 0.712 0.770
GIST (Choi and Lee, 2018) 0.716 + 0.01 | 0.711 £+ 0.01
BERT (Base) 0.680 == 0.02 | 0.623 = 0.07 0.651 0.685
World Knowledge (Botschen et al., 2018) | 0.674 = 0.01 | 0.568 + 0.03 0.610
BoV 0.639 +=0.02 | 0.564 + 0.02 0.569 0.595
BiLSTM 0.658 = 0.01 | 0.552 £ 0.02 0.552 0.592

. o n

Model Architecture

Experiment Result




Probing Neural Network Comprehension of Natural Language Arguments

(Niven et al. ACL 2019)

A Cue’s Applicability: ap = Z 1 {33:: k€ T?J Nk & T{:”
i—1

St [ ke TP Ak g T Ay, = j]

Productivity Coverage
Train 0.65 0.66
Validation 0.62 0.44
Test 0.52 0.77
All 0.61 0.64

The Cue “not” in Warrant

A Cue’s Productivity: T =
ay®

A Cue’s Coverage: & = ap/n

BERT(R,C) = 0.5

Test

Mean Median Max
BERT 0.671 = 0.09 0.712 0.770
BERT (W) 0.656 = 0.05 0.675 0.712
BERT (R, W) 0.600 = 0.10 0.574 0.750
BERT (C, W) 0.532 = 0.09 0.503 0.732
BoV 0.564 + 0.02 0.569 0.595
BoV (W) 0.567 = 0.02 0.572 0.606
BoV (R, W) 0.554 = 0.02 0.557 0.579
BoV (C, W) 0.545 = 0.02 0.544 0.589
BiLSTM 0.552 £ 0.02 0.552 0.592
BiLSTM (W) 0.550 = 0.02 0.547 0.577
BiLSTM (R, W) | 0.547 = 0.02 0.551 0.577
BiLSTM (C, W) | 0.552 = 0.02 0.550 0.601

Probing Experiments




Probing Neural Network Comprehension of Natural Language Arguments
(Niven et al. ACL 2019)

Original

Adversarial

Claim
Reason

Warrant

Alternative

Google is not a harmful monopoly

People can choose not to use Google

Other search engines do not redirect to Google

All other search engines redirect to Google

Google is a harmful monopoly
People can choose not to use Google

All other search engines redirect to Google

Other search engines do not redirect to Google

Adversarial Transfer

Test
Mean Median Max
BERT 0.504 + 0.01 0.505 0.533
BERT (W) 0.501 4+ 0.00 0.501 0.502
BERT (R, W) | 0.500 + 0.00 0.500 0.502
BERT (C, W) | 0.501 + 0.01 0.500 0.518

Adversarial Result

“with little to no understanding about
the reality underlying these arguments,
good performance shouldn’t be feasible.”



Probing Neural Network Comprehension of Natural Language Arguments
(Niven et al. ACL 2019)

Some Discussions:

Adversarial Attack in Computer Vision
Diverge or not ?

What about other models like XLNet ?
What about SOTA in ARCT, i.e. GIST ?

E" timniven commented 19 hours ago Member
p

Hi LFhase,

We haven't tested XLNet. A broader question though is why BERT can't solve this task, and whether
XLNet is likely to have whatever BERT lacks? | think it is important to develop an intuition about this. Of
course, you are welcome to conduct this experiment (and let me know the results!) since it actually
doesn't cost very much to just try. But since my intuition is that XLNet is very unlikely to have the world
knowledge needed for the task, | do not expect it to work, and therefore don't plan to conduct the
experiment myself. However, | welcome you to prove me wrong.

The degenerate runs on small training sets are discussed in the original paper {I don't think you would
call it "divergence,” but rather a lack of good convergence - a "degenerate run" is what the original
authors call it). In our case it is actually a rather subjective judgment. Locking at the training accuracies
of BERT's runs, you can generally see that when BERT doesn't get over 80% on the training set it
performs poorly on the validation and or test sets. I'm not 100% sure why this happens, it could be that
with such a small dataset there are more local minima to get stuck in during optimization. Again, if you
can develop your own intuition about this kind of question, then hopefully you can design an
experiment to test your hypothesis. But we do not suggest using the original dataset anymore because
of the bias coming from uneven distributions of linguistic artifacts over the labels. Since all models love
to exploit these statistics, this is a meaningless exercise. What we have called the "adversarial” dataset
(which may be not have been the best choice of words) is what you should use for any future work on
ARCT.

Good luck with your studies and best wishes to you :)

Tim.



Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in

Natural Language Inference
(McCoy et al. CoRR abs/1902.01007)

Heuristic

Definition

Example

Lexical overlap

Assume that a premise entails all hypothe-
ses constructed from words in the premise

———— The doctor paid the actor.

The doctor was paid by the actor.

WRONG
Subsequence Assume that a premise entails all of its The doctor near the actor danced.
contiguous subsequences. ————— The actor danced.

WRONG

Constituent Assume that a premise entails all complete If the artist slept, the actor ran.
subtrees in its parse tree. ———— The artist slept.
WRONG
Heuristics
Heuristic Premise Hypothesis Label

Lexical The banker near the judge saw the actor. The banker saw the actor. E
overlap The lawyer was advised by the actor. The actor advised the lawyer. E
heuristic The doctors visited the lawyer. The lawyer visited the doctors. N
The judge by the actor stopped the banker. The banker stopped the actor. N
Subsequence The artist and the student called the judge. The student called the judge. E
heuristic Angry tourists helped the lawyer. Tourists helped the lawyer. E
The judges heard the actors resigned. The judges heard the actors. N
The senator near the lawyer danced. The lawyer danced. N
Constituent  Before the actor slept, the senator ran. The actor slept. E
heuristic The lawyer knew that the judges shouted.  The judges shouted. E
If the actor slept, the judge saw the artist. ~ The actor slept. N
The lawyers resigned, or the artist slept. The artist slept. N

Accuracy

Heuristic Supporting Contradicting
Cases Cases

Lexical overlap 2,158 261

Subsequence 1,274 72

Constituent 1,004 58

Original Heuristic Distribution

Lexical overlap Subsequence Constituent
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Original Experiment Result




Right for the Wrong Reasons: Diagnosing Syntactic Heuristics in

Natural Language Inference
(McCoy et al. CoRR abs/1902.01007)

Some Analysis:

* Trainset too difficult?
No. Human 77% / 75%

* Lack of representation capabilities ?
No. RNNs implicitly implement

tensor-product representations

(McCoy et al. ICLR 2019)
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(Dasgupta et al. ACL 2018)
Result with Augmented Dataset




Conclusions

 BERTs are powerful because
* |t provides a novel way to pretrain representation models
* |t substantially push SOTA to a new level
* BERTs can be better with
* More careful optimizing
* Designing good pretraining tasks and objectives
* More robust dataset
 BERTs don’t solve NLP because

e Tasks like ARCT need more advanced high-level representation ability



Discussions/ Future Directions

* Two-Stage Pre-trained Models
* What’ the best recipe: Multi-Task? Fine-tune in Downstream Task?
* Should we embrace more robust training & data?
e Adversarial Attack in NLP
* Adversarial attack in NLP like CV?
» Dataset Construction / Evaluation
* |s the dataset robust to Model Exploitation?

* How to evaluate such ability?



