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Abstract

We present an unsupervised approach for factorizing object
appearance into highlight, shading, and albedo layers, trained
by multi-view real images. To do so, we construct a multi-
view dataset by collecting numerous customer product photos
online, which exhibit large illumination variations that make
them suitable for training of reflectance separation and can
facilitate object-level decomposition. The main contribution
of our approach is a proposed image representation based
on local color distributions that allows training to be insensi-
tive to the local misalignments of multi-view images. In addi-
tion, we present a new guidance cue for unsupervised training
that exploits synergy between highlight separation and intrin-
sic image decomposition. Over a broad range of objects, our
technique is shown to yield state-of-the-art results for both of
these tasks.

Introduction
Separating reflectance layers in an image is an essential step
for various image editing and scene understanding tasks.
One such layer is composed of highlights, which are mirror-
like reflections off the surface of objects. Extracting high-
lights from an image can be useful for problems such as
estimating scene illumination (Lombardi and Nishino 2016;
Yi et al. 2018) and reducing the oily appearance of faces (Li,
Zhou, and Lin 2015). The other two layers represent shading
and albedo. Their separation is commonly known as intrin-
sic image decomposition, which has been utilized in appli-
cations such as shading-based scene reconstruction (Yu et
al. 2013; Or-El et al. 2015) and texture replacement in im-
ages (Weiss 2001; Jeon et al. 2014).

Factorizing an image into the three reflectance layers is an
ill-posed problem that is best solved at present through ma-
chine learning. However, obtaining large-scale ground-truth
data for training deep neural networks remains a challenge,
and this has motivated recent work on developing unsuper-
vised schemes for the reflectance separation problem. The
unsupervised techniques that have been presented thus far all
take the same approach of training a network on image se-
quences of a fixed scene under changing illumination (Li and
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Snavely 2018b; Ma et al. 2018). With images from such a
sequence, these methods guide network training by exploit-
ing the albedo consistency that exists for each scene point
throughout the sequence.

A benefit of using image sequences of fixed scenes is that
the images are perfectly aligned, allowing scene point con-
sistency to be easily utilized. However, there exists an un-
tapped wealth of image data captured of objects from dif-
ferent viewpoints. A prominent example of such data is cus-
tomer product photos uploaded by consumers to show items
they bought. Some example customer photos are shown in
Figure 1. This source of imagery is valuable not just be-
cause of its vast quantity online, but also because it provides
object-centric data (different from the scene data compiled
in (Li and Snavely 2018b) from webcams) and can promote
robustness of factorizations to different object orientations.
These images also exhibit a larger variation in illumination
conditions and camera settings, which can potentially ben-
efit the trained network. An issue with using such images
though is that they are difficult to align accurately, as they
vary in viewpoint, lighting and imaging device. Misalign-
ment among the images of an object would lead to violations
of scene point consistency on which the existing unsuper-
vised methods are based.

In this paper, we present an unsupervised method for re-
flectance layer separation using multi-view image sets such
as customer product photos. To effectively learn from such
data, our system is designed so that its training is rel-
atively insensitive to misalignments. After approximately
aligning images with state-of-the-art correspondence esti-
mation techniques (Rocco, Arandjelovic, and Sivic 2018;
Ilg et al. 2017), the network transforms the images into a
proposed representation based on local color distributions.
An important property of this representation is its ability to
model detailed local content over an object in a manner that
discards fine-scale positional information. With this color
distribution based descriptor, unsupervised training becomes
possible using consistency constraints between multi-view
images of an object.

An additional contribution of this work is a method for
further guiding the unsupervised training via a relationship
between highlight separation and intrinsic decomposition of
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Figure 1: Selected product photos from the Customer Prod-
uct Photos Dataset. The products exhibit a wide range of
textures, shapes, shadings, and highlight patterns. The sec-
ond last row shows selected multiview images of the same
object, where the leftmost one is the segmented reference
image. The last row shows the roughly aligned images.

shading and albedo. We observe that shading separation be-
comes less reliable when highlights are present in its input
images, due to color distortions caused by different highlight
saturation and possibly different illumination color among
the images. Our system takes advantage of this through a
novel contrastive loss that is defined between shading sepa-
ration results computed with and without the inclusion of our
highlight extraction sub-network. We show that by maximiz-
ing this contrastive loss, the shading separation sub-network
provides supervision that improves the performance of the
highlight extraction sub-network.

With the presented approach, our system produces state-
of-the-art results on highlight separation, and yields intrin-
sic image decomposition accuracy at a level comparable to
leading methods. The code and data for this work will be
released online upon paper publication.

Related work
Intrinsic image decomposition Previous to the deep-
learning approaches of recent years, intrinsic image decom-
position was primarily addressed as an optimization prob-
lem constrained by various prior assumptions about nat-
ural scenes. These priors have been used to classify im-
age derivatives as either albedo or shading change (Land
and McCann 1971; Funt, Drew, and Brockington 1992),
to prescribe texture coherence (Shen, Tan, and Lin 2008;
Zhao et al. 2012), and to enforce sparsity in the set of albe-
dos (Shen and Yeo 2011; Rother et al. 2011). Decomposi-
tion constraints have also been derived using additional in-
put data such as image sequences (Weiss 2001), depth mea-

surements (Lee et al. 2012), and user input (Bousseau, Paris,
and Durand 2009).

These earlier methods have been surpassed in perfor-
mance by deep neural networks which learn statistical pri-
ors from training data. Some of these networks are trained
with direct supervision, in which the ground-truth albedo
and shading components are provided for each training
image (Narihira, Maire, and Yu 2015b; Kim et al. 2016;
Shi et al. 2017; Baslamisli, Le, and Gevers 2018; Li and
Snavely 2018a). To obtain ground truth at a large scale for
training deep networks, these methods utilize synthetic ren-
derings, which can lead to poor generalization of the net-
works to real-world scenes. This issue is avoided in sev-
eral methods by training on sparse annotations of relative
reflectance intensity (Bell, Bala, and Snavely 2014) or rela-
tive shading (Kovacs et al. 2017) in real images (Zhou, Kra-
henbuhl, and Efros 2015; Narihira, Maire, and Yu 2015a;
Kovacs et al. 2017; Fan et al. 2018). However, these man-
ual labels provide only weak supervision, and the need for
supervision reduces the scalability of the training data.

Most recently, unsupervised methods have been presented
in which the training is performed on image sequences taken
from fixed-position, time-lapse video with varying illumina-
tion (Li and Snavely 2018b; Ma et al. 2018). In these net-
works, a major source of guidance for unsupervised training
is the temporal consistency of reflectance for static regions
within a sequence. The networks are configured so that they
can be applied to just a single input image at inference time.

Our proposed system also trains on multiple images in
an unsupervised manner and can be applied at test time
on single images. Different from the previous fixed-view
multi-image techniques (Li and Snavely 2018b; Ma et al.
2018), our network uses unconstrained multi-view images
and deals specifically with misalignment issues that arise in
this setting. Such image sequences from unconstrained ran-
dom views are much easier to obtain than fixed-view im-
ages. Moreover, our method additionally separates highlight
reflections and introduces a mechanism by which highlight
extraction and intrinsic decomposition can mutually benefit
each other in unsupervised training.

We note that multiview images have previously been used
for intrinsic image decomposition of outdoor scenes (Laf-
font, Bousseau, and Drettakis 2013; Duchêne et al. 2015).
The decomposition is solved by an inverse rendering ap-
proach, where shading is inferred from an approximate mul-
tiview stereo reconstruction and an illumination environ-
ment estimated given the known sun direction. The multi-
view images are required to be taken under the same light-
ing conditions. By contrast, we address a problem where no
knowledge about the illumination is given and the lighting
can differ from image to image.

Highlight separation Similar to intrinsic image decom-
position, separation of highlight reflections is an ill-posed
problem that has been made tractable through the use of
different priors. Among them are priors on piecewise con-
stancy of surface colors (Klinker, Shafer, and Kanade 1988),
smoothness of diffuse (Tan et al. 2003) or specular (Liu
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Figure 2: Network structure.

et al. 2015) reflection, constancy in the maximum diffuse
chromaticity (Tan and Ikeuchi 2005), diffuse texture coher-
ence (Tan, Lin, and Quan 2006), low diffuse intensity in a
color channel (Kim et al. 2013), sparsity of highlights (Guo,
Zhou, and Wang 2018), and a low-rank representation of dif-
fuse reflection (Guo, Zhou, and Wang 2018).

Instead of crafting priors for highlight extraction by hand,
they can be learned in a statistical fashion from images us-
ing neural networks. This was first investigated together with
intrinsic image decomposition through supervised learning
on a large collection of rendered images (Shi et al. 2017).
An unsupervised approach was later presented for the case
of human faces, where a set of images of the same face is
aligned using detected facial landmark points, and training
guidance is provided by a low-rank constraint on diffuse
chromaticity across the aligned images (Yi et al. 2018). In
(Yi et al. 2018), face images are easy to align because of
mature facial landmark detection techniques; however, their
method works poorly on random objects without such land-
marks. Thus, we design a much general method to deal with
such multi-view images of general objects which are dif-
ficult to align accurately. Since misaligned images violate
the low-rank property assumed in (Yi et al. 2018), we pro-
pose a technique that is robust to such local misalignments,
thus enabling unsupervised training over a much broader
range of objects. Thus, our method is the first unsupervised
method using unconstrained images under random illumina-
tion, background, and viewpoints.

Overview
We train an end-to-end deep neural network to separate a
single image into highlight, albedo/reflectance, and shading
layers using the Customer Product Photos Dataset. Com-
piled from online shopping websites, the dataset contains
numerous product photos provided in customer reviews. The
photos for a given product are captured under various view-
points, illumination conditions, and backgrounds. We in-
troduce this dataset in Section Customer Product Photos
Dataset.

As illustrated in Figure 2, our network consists of two
subnets: H-Net for decomposing an image into diffuse and
highlight layers, and S-Net for additionally decomposing
the diffuse layer into albedo and shading layers. Train-
ing consists of three phases. First, both H-Net and S-Net
are pretrained using a small set of synthetic data from
ShapeNet (Shi et al. 2017). Each subnet is then finetuned
in an unsupervised manner on the Customer Product Photos
Dataset using the proposed color distribution loss (Section
Misalignment-robust color distribution loss), which is ro-

bust to misalignments. In the last phase, a novel contrastive
loss is used to finetune the whole network end-to-end. The
training phases are presented in Section Our Network.

Customer Product Photos Dataset
Almost every popular online shopping website includes cus-
tomer reviews, where customers are often encouraged to up-
load product photos. For a given product, the customer pho-
tos capture it under a various viewpoints, illuminations, and
backgrounds. At the same time, the different products cover
a large variety of materials and shapes. Collectively, these
customer photos capture the complex interaction between
different 3D shapes, materials, and illumination, and form
a dataset that can be useful for computer vision tasks such
as intrinsic image decomposition and multi-view stereo.

Construction of the dataset involved a series of steps
consisting of product selection, photo downloading, rough
image alignment, and data filtering. Due to limited space,
please refer to the supplement for details.

The final Customer Product Photos Dataset consists of
228 products (some shown in Figure 1) with 10–520 pho-
tos for each product. In total, the dataset consists of 9,472
photos. For each product, there is one mask provided for the
reference image. The original and aligned images will be
made available online upon paper publication.

Our Network
Problem formulation
An input image I comprises an additive combination of a
highlight layer H and a diffuse layer Id, where the diffuse
layer Id is a pixelwise product of an albedo/reflectance layer
A and a shading layer S, i.e.,

I = H + Id = H +A · S. (1)

Our problem is to estimate H, Id, A, S from the input image
I . We note that this image model differs from the conven-
tional intrinsic image model, I = A · S, which omits the
additive effects of highlights and thus implicitly assumes ob-
ject surfaces to be matte (Shi et al. 2017).

Low-rank loss for unsupervised training
Most CNN-based methods (Janner et al. 2017; Shi et al.
2017; Narihira, Maire, and Yu 2015a) for intrinsic image
separation rely completely on ground truth separation re-
sults for supervised training. As it is difficult to obtain ref-
erence ground truth for highlight separation or intrinsic im-
age decomposition on real images, we propose to train our
network by unsupervised finetuning on real multiview im-
ages after an initial supervised pretraining step with syn-
thetic data from the ShapeNet dataset (Shi et al. 2017). This
pretraining uses 28,000 out of the 2,443,336 images in the
dataset, or about 1.1% of the total, and is intended to provide
the network with a good initialization. The finetuning is then
intended to adapt the network to the domain of real images,
for which ground truth is generally unavailable.

We first assume perfect image alignment in deriving the
low-rank loss for unsupervised training. This requirement
on alignment will be relaxed in the next subsection.



H-Net For training of highlight separation, our net-
work utilizes input consisting of multiple aligned images
I1, I2, I3, · · · of the same object under different lighting.
According to the image formation model, these images each
have a diffuse layer, denoted as Id1, Id2, Id3, · · · . These dif-
fuse layers can differ from each other due to changes in
shading that arise from different illumination conditions.
To discount this shading variation, we compute the chro-
maticity maps of these diffuse layers. A chromaticity map
(Chr, Chg) is an intensity-normalized image, where

Chr(p) =
R(p)

R(p) +G(p) +B(p)
,

Chg(p) =
G(p)

R(p) +G(p) +B(p)
,

at each pixel p, with R(p), G(p), B(p) denoting the color
values at p.

According to the dichromatic reflectance model (Shafer
1985), the chromaticity of diffuse layers is the chromatic-
ity of the surface albedo multiplied with that of the illumi-
nation. Assuming a constant illumination color across each
image, we discount the effect of illumination chromaticity
by matching the median chromaticity of each diffuse image
to that of the reference image in each batch. After these nor-
malizations, the set of chromaticity maps should be of low
rank if the images are accurately aligned.

The structure of H-Net is adopted from the encoder-
decoder network in (Narihira, Maire, and Yu 2015b) with an
added batch normalization layer after each convolution layer
to aid in network convergence. We also examined adding
skip connections between the encoder and decoder as done
in (Shi et al. 2017), but we found them not to be helpful in
our network.

S-Net Our S-Net for predicting the shading layer S uses
the same network structure as H-Net. The albedo layer A
is computed from S at each pixel p according to the image
formation model, as

A(p) = Id(p)/S(p), (2)

once the shading layer is fixed.
For multiple aligned diffuse images Id1, Id2, Id3, · · · of

the same object, their albedo layers A1, A2, A3, · · · should
be the same. Therefore, we can enforce a consistency loss
on these different albedo layers for unsupervised training of
S-Net.

Low-rank loss Our unsupervised training enforces consis-
tency among diffuse chromaticity layers and albedo layers
via a low-rank loss. For the case of albedo layers, the low-
rank loss can be defined as the second singular value of the
matrix M formed by reshaping each albedo image into a
vector and stacking the vectors of multiple images (Yi et al.
2018). Although consistency could alternatively be enforced
through minimizing L1 or L2 differences, e.g. minimizing
|A1 − A2|1,2, the lack of scale invariance of the L1 and L2

losses can lead to degenerate results where A1 and A2 ap-
proach zero. To avoid this problem, the loss function should
satisfy the following constraint,

L(A1, A2) = L(αA1, αA2),

where α is a global scale factor for the whole albedo image.
In order to make the low-rank loss scale-invariant, we use

the first singular value to approximate the scale and define a
scale-invariant low-rank loss (SILR) as

LSILR = σ2/σ1,

∂LSILR

∂Mi,j
=
σ1 ∗ (Ui,2 × V2,j)− σ2 ∗ (Ui,1 × V1,j)

σ2
1

.
(3)

where σ1 and σ2 are the first two singular value of M com-
puted by SVD decomposition. We apply this scale-invariant
low-rank loss (SILR) to train both H-Net and S-Net.

Misalignment-robust color distribution loss
We present a way to relax the requirement of pixel-to-
pixel correspondence in the low-rank loss, so that customer
photos can be effectively utilized for training. Our obser-
vation is that, though precise pixelwise alignment is gen-
erally difficult, the state-of-the-art alignment algorithms,
e.g. WeakAlign (Rocco, Arandjelovic, and Sivic 2018) and
FlowNet (Ilg et al. 2017; Dosovitskiy et al. 2015), are ma-
ture enough to establish a reasonable approximate align-
ment. Thus, though some pixels may be misaligned, their
correct correspondences are still within a small neighbor-
hood of their estimated locations. This motivates us to de-
velop a local distribution based representation for the low-
rank loss.

Suppose we have a predicted albedo layerA. We partition
it into a grid ofN cells. Within each cell, we reorder the pix-
els by increasing intensity. This is done for each color chan-
nel individually, and all the cells for all the color channels
are reshaped and concatenated to form a new vector repre-
sentation for the image. The color distribution loss is then
computed as the SILR of these image vectors. In our imple-
mentation, we divided 320×320 images into 256 grid cells
for all training phases.

This vector representation of locally re-ordered pixel val-
ues is robust to slight misalignment for the following rea-
sons: (1) Since the dimensions of grid cells are much larger
than typical misalignment distances, the corresponding grid
cells of different images will largely overlap the same ob-
ject regions; (2) Products tend to have a sparse set of surface
colors, and the pixel reordering will help to align these col-
ors between the corresponding grid cells of different images,
which is sufficient for measuring color-based consistency;
(3) With this representation, the SILR loss is empirically
found to be more sensitive to the presence of highlights or
albedo distortions than to slight misalignment, as illustrated
in Figure 3 for diffuse chromaticity.

We note that a local color distribution could more directly
be modeled by a color histogram. However, color histograms
are not differentiable, and this motivated us to develop the
pixel reordering representation as a differentiable approxi-
mation to color histograms. Local regions that have similar
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Figure 3: Distances between color distributions are more
sensitive to the presence of highlights than to pixel-to-pixel
distance between misaligned images. The grid cells in the
top two images are spatially closer to each other, but have
greater difference in color distribution due to highlights.

color histograms will have similar pixel reordering represen-
tations, and vice versa.

Joint finetuning by contrastive loss
After training H-Net and S-Net individually, we adopt a
novel contrastive loss to finetune the entire network in an
end-to-end manner. Our approach is based on the observa-
tion that intrinsic image decomposition can be better per-
formed after highlights have been separated from input im-
ages. Related observations have been made in other recent
works. For example, Ma et al. (Ma et al. 2018) mention that
their method cannot handle specularity well, and this limita-
tion will be addressed in future work. Also, Shi et al. (Shi et
al. 2017) discuss that the multiplicative intrinsic image de-
composition model, Id = A · S, cannot adequately account
for additive highlight components.

Based on this observation, we define a contrastive loss. As
indicated in Figure 4, our low-rank loss on the albedo layers
of multiple images is L1 if highlights are removed from the
input images following the image formation model I = A ·
S +H . In another branch, we compute the low-rank loss on
albedo layers as L0, where the input images are decomposed
by S-Net directly following the image formation model I =
A · S. The contrastive loss is defined as:

Lct = L1 − L0. (4)

Intuitively, the contrastive loss is designed to maximize
the distance between L1 and L0 (where Lct is negative), so
as to force H-Net to improve its highlight separation and thus
decrease L1 relative to L0. Both subnets can be finetuned by
this loss. In our experiments, we found that using Lct alone
will lead to increases of both L1 and L0, as this increases
their difference as well. To avoid this degenerate case, we
add ωL1 as a regularization, such that the joint finetuning
loss becomesL = Lct+ωL1, where ω is set to 1.0 in our im-
plementation. This ensures that both L1 and the contrastive
loss are minimized together.

After these three training phases, our network shown in
Figure 2 is able to separate the highlight, diffuse, albedo,

I1…n D1…nH1…n S1…n

A1…n

-

/

Shared

S’1…n

A’1…n/ Loss0

Loss1

H-Net S-Net
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Figure 4: Network structure for joint finetuning by con-
trastive loss.

and shading layers of a test image. Further implementation
details are given in the supplement.

Experiments
Since previous works generally address highlight separa-
tion or intrinsic image estimation but not both, we eval-
uate our method on these two tasks separately on various
datasets. Due to limited space, many additional results and
analyses, including evaluations on the MIT intrinsic image
dataset (Grosse et al. 2009) and Intrinsic Images in the Wild
(IIW) (Bell, Bala, and Snavely 2014), highlight separation
on grayscale images (which cannot be handled by most pre-
vious techniques), and the inadequacy of structure-from-
motion for aligning our customer photos, are provided in the
supplement.

Highlight separation
Synthetic dataset In Table 1 (top-left), we compare our
method to several leading techniques on highlight sepa-
ration using synthetic data from the ShapeNet Intrinsic
Dataset (Shi et al. 2017). From this dataset, we randomly
select 500 images covering a wide range of objects and ma-
terials to form the test set. The results are reported in terms
of MSE and DSSIM, which measure pixelwise difference
and structural dissimilarities, respectively.

Examples for visual comparison are shown in Figure 5.
Earlier methods (Tan, Nishino, and Ikeuchi 2004; Yang,
Wang, and Ahuja 2010; Shen and Zheng 2013) often as-
sume the illumination to be white and can estimate only
a grayscale highlight layer, even when the lighting is not
white. Moreover, they cannot deal well with saturated re-
gions, which generally have non-white highlight compo-
nents that result from subtracting (non-white) diffuse com-
ponents from saturated image values. A recent method (Guo,
Zhou, and Wang 2018) handles saturated highlight regions
better with a low-rank and sparse decomposition. However,
it still cannot recover correct diffuse color at saturated re-
gions where its assumed dichromatic model is violated, lead-
ing to artifacts in diffuse layers. The CNN-based method of
(Shi et al. 2017) can learn from various training data com-
posed of different surface materials, but it still does not han-
dle saturation well. By comparison, our method succeeds in
predicting highlight colors and generates reasonable diffuse
layers even for saturated regions.

Real dataset Since no standard real-image dataset exists
for evaluating highlight separation, we captured a dataset
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Figure 5: Visual comparisons of highlight separation on the
ShapeNet Intrinsic Dataset. For each example, the top row
shows the input image and separated diffuse layers, and the
bottom row exhibits the separated highlight layers. GT de-
notes ground truth.

consisting of 20 ordinary objects with ground truth obtained
by cross polarization in a laboratory environment. Table 1
(top-right) shows the MSE and DSSIM of different methods
on this dataset. Qualitative comparisons are shown in Fig-
ure A.6 and Figure A.7 of the supplement. Our method is
found to recover highlight and diffuse layers closest to the
ground truth, with highlights of correct color even in sat-
urated regions. While our technique successfully estimates
the surface colors in the diffuse layers, the other methods
tend to leave black artifacts at saturated regions. Additional
qualitative results on real images under natural lighting can
be found in the supplement as well.

Ablations We conducted an ablation study to examine the
main novel elements of our system, with the results shown
in Table 1 (bottom). When the unsupervised finetuning is
removed from the system, the difference in performance be-
comes more significant on real images than on synthetic im-
ages, since the finetuning provides training in the domain
of real images. On real images without finetuning, the per-
formance is at a level similar to the previous state of the
art, while our full system yields an approximate 20-25% im-
provement over this.

To examine the importance of our color distribution loss
in dealing with misalignment, we compare to the results of
our network when using a pixel-to-pixel low-rank loss in-
stead. Some moderate quantitative gain is observed, about
4-20% for synthetic images and 7-10% for real images. We
point readers to the qualitative comparisons shown in Fig-
ure A.1 of the supplement, where the diffuse layers com-
puted without the color distribution loss contain severe ar-
tifacts around highlight regions. Later, it will be shown that
the color distribution loss has greater quantitative impact on
intrinsic image decomposition.

Synthetic Real
Method MSE DSSIM MSE DSSIM

Tan et al. 0.0155 0.0616 0.0173 0.0368
Yang et al. 0.0053 0.0336 0.0043 0.0162
Shen et al. 0.0059 0.0338 0.0047 0.0163
Shi et al. 0.0063 0.0526 0.0063 0.0237
Guo et al. 0.0028* 0.0208* 0.0045 0.0145

Ours 0.0016 0.0159 0.0036 0.0139
No Finetuning 0.0015 0.0176 0.0045 0.0188
Pixel-to-pixel 0.0020 0.0166 0.0041 0.0149

Table 1: Highlight separation on the synthetic ShapeNet In-
trinsic Dataset and on a real-image dataset. Errors are for
diffuse layers. Top: Comparison to state of the art. Lowest
errors shown in red, and second lowest in blue. Guo(Guo,
Zhou, and Wang 2018) is tested on only 50 of the 500 syn-
thetic data in total, with the results marked by *, since we
needed the authors to process our images. Bottom: Abla-
tions.

MSE(A) DSSIM(A) MSE(S) DSSIM(S)
SIRFS 0.0081 0.0636 0.0066 0.0785

DI 0.0086 0.0590 0.0047 0.0765
Shi et al. 0.0068 0.0565 0.0023 0.0691
Li et al. 0.0066 0.0541 0.0063 0.0812

Ours 0.0054 0.0436 0.0045 0.0686
No Finetuning 0.0108 0.0664 0.0096 0.0810
Pixel-to-pixel 0.0067 0.0460 0.0087 0.0774

Table 2: Intrinsic image decomposition on synthetic data
from the ShapeNet Intrinsic Dataset. The lowest errors are
highlighted in red and the second lowest are in blue.

When the contrastive loss is removed from the system, the
solution often degenerates to a diffuse layer of all zeros, as
this allows H-Net to reach a minimum most quickly. Similar
to a generative adversarial network (GAN), the contrastive
loss creates a competition between losses that can steer the
learning toward better minima and/or away from degenerate
cases. By including the contrastive loss, the learning rate of
S-Net becomes twice that of H-Net, causing the training to
focus more on S-Net and thus avoiding degenerate solutions.

Intrinsic image decomposition
ShapeNet Intrinsic Dataset For intrinsic image decom-
position, we compare our network to SIRFS (Barron and
Malik 2015), DI (Narihira, Maire, and Yu 2015b), Shi et
al. (Shi et al. 2017), and Li et al. (Li and Snavely 2018b)
on the ShapeNet Intrinsic Dataset. Similar to the evaluation
of highlight separation, we use MSE and DSSIM to mea-
sure results. These results are summarized in Table 2 (top)
and show the relatively strong performance of our method.
Qualitative comparisons are shown in Figure A.13 and Fig-
ure A.14 of the supplement.

SIRFS (Barron and Malik 2015), which is based on scene
priors, fails on non-Lambertian objects. The learning-based
method DI (Narihira, Maire, and Yu 2015b) trained on syn-
thetic diffuse scenes exhibits similar problems. The method
by Shi et al. (Shi et al. 2017) performs better than previ-
ous methods on non-Lambertian objects. One reason is that,
like our method, it explicitly models highlights, in contrast
to other methods (Narihira, Maire, and Yu 2015b; Barron



MSE(S) DSSIM(S)
SIRFS(Barron and Malik 2015) 0.0097 0.0457

DI(Narihira, Maire, and Yu 2015b) 0.0061 0.0385
Shi(Shi et al. 2017) 0.0043 0.0331

Li(Li and Snavely 2018b) 0.0073 0.0401
CG(Li and Snavely 2018a) 0.0061 0.0413

Ours 0.0041 0.0316

Table 3: Evaluation of shading accuracy on the DiLiGenT
dataset. The lowest errors are highlighted in red.

and Malik 2015; Li and Snavely 2018b) which consequently
have artifacts in the albedo layer on highlight regions. An-
other reason is because it is trained on the ShapeNet Intrinsic
training split with 80% of the whole dataset. In comparison,
our method is pretrained on a very small amount (1.1%) of
the ShapeNet dataset to obtain a good network initialization,
and is finetuned on a large amount of real data. Despite this,
it still performs well on synthetic ShapeNet images. Since
our S-Net solves for shading and then computes albedo us-
ing the image formation model Id = A ·S, it generates high
resolution albedo maps with texture details, whereas many
networks that directly solve for albedo will obtain blurred
results due to feature map downsampling in the network.

DiLiGenT dataset We also conduct experiments on real
images. Since there do not exist intrinsic image datasets
with ground truth for general real objects1, we evaluate
on ground-truth shading layers generated from the DiLi-
GenT photometric stereo dataset (Shi et al. 2019). As DiLi-
GenT provides ground-truth surface normals and lighting,
but no reflectance information, only the shading layers can
be reconstructed. The dataset contains images of 10 non-
Lambertian objects under 96 different lighting conditions.

Comparisons of our network are made to several leading
techniques. Qualitative and quantitative results are shown in
Figure 6 and Table 3. It is found that our network yields
the highest accuracy in this challenging case of real non-
Lambertian objects.

Other datasets There exist other datasets that can be used
for intrinsic image evaluation, including the MIT intrinsic
image dataset (Grosse et al. 2009) and Intrinsic Images in
the Wild (IIW) (Bell, Bala, and Snavely 2014). Due to lim-
ited space, comparisons on these datasets, as well as qualita-
tive comparisons on more natural images collected from the
Internet, are presented in the supplement. In addition, some
qualitative results of full end-to-end separations on real im-
ages are shown in Figure 7, with comparisons to a combi-
nation of two previous methods that exhibit state-of-the-art
performance in quantitative evaluations.

Ablations Ablation experiments were also conducted for
intrinsic image decomposition on ShapeNet, with the results
given in Table 2 (bottom). Even though ShapeNet consists of
synthetic images, significant gains were obtained by includ-
ing the unsupervised finetuning (15-50%) and by using the

1The IIW dataset (Bell, Bala, and Snavely 2014) and SAW
dataset (Kovacs et al. 2017) are of real scenes, while the objects in
the MIT dataset (Grosse et al. 2009) are restricted to highly Lam-
bertian reflectance.

Shi OursLiDISIRFS GTInput CG

Figure 6: Shading layer comparisons on DiLiGenT dataset.
Please see Table 3 for the notations of previous methods.

DiffuseInput Highlight Albedo Shading

Figure 7: Qualitative comparisons on real images. We com-
pare our end-to-end separation (odd rows) to the combina-
tion of Yang (Yang, Wang, and Ahuja 2010) for highlight
separation and Shi (Shi et al. 2017) for intrinsic image de-
composition (even rows).

color distribution loss instead of a pixel-to-pixel low rank
loss (5-48%). The difference is particularly large for shad-
ing, as also evidenced in the qualitative comparisons shown
in Figure A.1 of the supplement where the shading layers
are more indicative of surface shape. As with highlight sep-
aration, removal of the contrastive loss leads to degenerate
solutions where the diffuse layer is all zero.

Conclusion

We proposed an end-to-end network to solve highlight sepa-
ration and intrinsic image decomposition together. Our net-
work is able to leverage multi-view object-centric image
sets, such as our Customer Product Photos Dataset, for unsu-
pervised training via a proposed color distribution loss that
is robust to misaligned data. This loss can readily be adapted
for other tasks that are sensitive to misalignment.
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Appendix A

Supplementary Material:
Leveraging Multi-view Image Sets for Unsupervised
Intrinsic Image Decomposition and Highlight Separation

Ablation studies
In this section, we present additional ablation results, including fur-
ther results on an ablation discussed in the main text, as well as
other ablation studies.

Robustness to misalignment
Section Experiments of the main text present ablation studies that
examine the robustness of our color distribution loss to misalign-
ment of training images. Quantitative comparisons are given in Ta-
ble 1 (bottom) in the main text for highlight separation and Table 2
(bottom) in the main text for intrinsic image decomposition. It is
shown that the color distribution loss is more robust to misalign-
ment, and here in Figure A.1 we display some qualitative results
from this comparison. It can be seen that for both highlight separa-
tion and intrinsic image decomposition, the pixel-to-pixel low-rank
loss is not as effective as our color distribution loss for training our
full network. For highlight extraction, many highlights are missed
in the results while some are overestimated, which shows that a
pixel-to-pixel low-rank loss will suffer from misalignment in train-
ing images. For intrinsic image decomposition, problems exist with
the pixel-to-pixel low-rank loss as well, giving shading predictions
that are often incorrect around edges where misalignments have
the greatest impact. Trained on exactly the same data, our network
with color distribution losses yields much better results, indicating
greater robustness to local misalignments.

Without pretraining on synthetic data
Our model is pretrained on a small amount of synthetic data to
bootstrap the unsupervised phases. Here, we examine training the
network from scratch with only the unsupervised finetuning. As
shown in Figure A.2, reasonable highlight extraction and intrin-
sic image decomposition can be achieved even without pretraining
on synthetic data. We evaluated the fully unsupervised network on
ShapeNet Intrinsics Dataset and obtained an MSE and DSSIM for
highlight extraction of 0.0041 and 0.0227, compared to the left-
most two columns of Table 1 in the main paper. The MSE and
DSSIM on real images are 0.0057 and 0.0199, compared to the
rightmost two columns of Table 1 in the main paper, which are
comparable to previous methods. For intrinsic image decomposi-
tion, the MSE and DSSIM are 0.0067 and 0.0527 for albedo, and
0.0059 and 0.0808 for shading, compared to the corresponding val-
ues 0.0054 and 0.0436 for albedo, and 0.0045 and 0.0686 for shad-
ing in Table 2 of the main paper. This indicates that there is some
moderate dropoff without the pretraining on synthetic data, but the
performance nevertheless compares well to previous techniques.

Using structure-from-motion to align images

We explored different alignment methods for our multi-view sets
of customer product photos. The most advanced technique is the
recent work in (Cui et al. 2017), where they use structure-from-
motion to reconstruct the 3D scene and then use it as guidance to
align videos of the same scene. Based on this, we implemented
a method in which we take 50 multi-view images, reconstruct a
sparse point cloud from them using VisualSFM (Wu and others ),
and then use PMVS2 (Furukawa and Ponce 2010) to further recon-
struct dense point clouds. However, after applying this structure-
from-motion technique to our multi-view customer product pho-
tos, we found that many issues exist, as shown in Figure A.3 for
four examples from our dataset, ordered by increasing difficulty of
alignment. Starting from the easiest case (A), a notebook with a
minimal highlight layer, the textured regions of the notebook are
reconstructed in the point clouds, but textureless regions cannot be
reconstructed due to the lack of feature points. However, only the
reconstructed regions can be accurately corresponded among the
photos. The example in (B) is a common kind of product in our
dataset, with some words on a plastic container. It can be seen that
only the textured regions can be reconstructed, while some texture-
less regions are missing, like the cap of the bottle. Another prob-
lem is that due to various backgrounds in multi-view images, there
are also many background points reconstructed, which adds much
noise to the point clouds. Backgrounds are different from image
to image and should not be part of the reconstruction, but man-
ually segmenting the foreground in all images is unfeasible. The
third example (C) comes from Figure 1 in the main paper. Since it
contains little texture for computing feature correspondences, the
reconstructed point clouds are very sparse. The fourth example (D)
is a metal speaker, which is smooth and glossy. For this kind of
object, VisualSFM is unable to provide a result because the feature
correspondences are too few.

In summary, using structure-from-motion to reconstruct an ob-
ject from our multi-view images faces the following difficulties: the
existence of highlights may change the appearance of objects; tex-
tureless regions cannot be reconstructed; various backgrounds will
lead to much noise; and the number of photos may be too small
for certain objects. After much exploration, we found that a com-
bination of WeakAlign (Rocco, Arandjelovic, and Sivic 2018) and
FlowNet2.0 (Ilg et al. 2017) provides the best alignment results
for our customer product photos, but the alignment is not accurate
enough to use a pixel-to-pixel loss, as discussed in Section Ablation
Studies on the first page.
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Figure A.1: Visual comparisons between our color distribu-
tion loss and the pixel-to-pixel low-rank loss in handling
misalignment of training images. The top two examples
show comparisons on highlight separation, and the bottom
two show comparisons on intrinsic image decomposition.

Customer photos dataset
In the main paper, due to space limitations, we mention the con-
struction of the dataset very briefly. Here, we describe the steps in
more detail:

1. Product selection: We manually select product pages con-
taining many customer photos and for which the product does not
have multiple versions (e.g., different colors, textures or shapes), so
that the product is the same in each photo. We also favor products
with an apparent front side, which facilitates alignment.

2. Photo downloading: We then download customer photos of
selected products with batch downloading tools.

3. Rough image alignment: For each product, we select one
image as the reference and manually segment the object to re-
move the background. The unconstrained viewpoints and illumina-
tion differences among the images makes alignment challenging.
We first use WeakAlign (Rocco, Arandjelovic, and Sivic 2018) to
align each of the other images to the segmented reference by an
affine transformation. After this global parametric warping, we use
FlowNet2.0 (Ilg et al. 2017) to further align the warped images
to the reference. After the transformations of these two steps, the
objects in each image will roughly but imperfectly align to the ref-
erence. The foreground mask of the reference is used to segment
the objects after this alignment. An example of this alignment is
shown in the last two rows of Figure 1 of the main text.

4. Data filtering: Customer photos exhibit large differences in
illumination color as well. To simplify our task, we select photos
whose illumination color is similar to that of the reference. This
similarity is measured by the difference in median chromaticity.
We keep only the top 20% of images by this metric. No white bal-
ancing is applied, and a gamma of 2.2 is assumed for radiometric
calibration. We manually check all the images and remove those
with unsuitable content or poor alignment.

The final Customer Product Photos Dataset consists of 228 prod-
ucts with 10–520 photos for each product. In total, the dataset con-
sists of 9,472 photos. For each product, there is one mask provided
for the reference image. The original and aligned images will be
made available online upon paper publication.

Additional results on highlight separation
In addition to the quantitative evaluation and qualitative results
shown in the main paper, here we show more qualitative results for
highlight separation, with comparisons to previous methods (Guo,
Zhou, and Wang 2018; Shi et al. 2017; Shen and Zheng 2013;
Yang, Wang, and Ahuja 2010; Tan and Ikeuchi 2005). One bonus
of our CNN-based highlight separation method is that it can be
used to extract the highlight layers from grayscale images, unlike
previous methods which are based on color analysis.

Visual comparisons on ShapeNet Intrinsics Dataset
Additional visual comparisons of highlight separation on ShapeNet
Intrinsics Dataset are shown in Figure A.4 and Figure A.5. Our
methods can predict a correct highlight color even when highlight
regions are saturated, and the diffuse colors can be recovered cor-
rectly.

Visual comparisons on captured real images under
lab illumination
For evaluation on real images, since there are no real-image
datasets available, we captured a set of real images under lab illu-
mination with ground truth obtained by cross-polarization. Quanti-
tative evaluations on this dataset are shown in the main paper. Here,
qualitative comparisons are shown in Figure A.6 and Figure A.7.
Most previous methods perform well for images where highlight
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Figure A.2: Qualitative results on real images for a fully unsupervised version of our network, without pretraining on synthetic
data.
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Figure A.3: Dense point clouds reconstructed from our multi-view images, using VisualSFM (Wu and others ) and PMVS2 (Fu-
rukawa and Ponce 2010). For each example, selected multi-view images are shown on the left, and reconstructed dense point
clouds are shown on the right.
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Figure A.4: Qualitative comparisons of highlight separation on ShapeNet Intrinsics Dataset. Tan denotes (Tan and Ikeuchi
2005), Yang denotes (Yang, Wang, and Ahuja 2010), Shen denotes (Shen and Zheng 2013), Shi denotes (Shi et al. 2017), Guo
denotes (Guo, Zhou, and Wang 2018), and GT denotes ground truth separations. For each method, diffuse layers are shown in
odd rows and highlight layers are shown in even rows.
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Figure A.5: Qualitative comparisons of highlight separation on ShapeNet Intrinsics Dataset. Tan denotes (Tan and Ikeuchi
2005), Yang denotes (Yang, Wang, and Ahuja 2010), Shen denotes (Shen and Zheng 2013), Shi denotes (Shi et al. 2017) and
GT denotes ground truth separations. For each method, diffuse layers are shown in odd rows and highlight layers are shown in
even rows.



pixels are not saturated; however, saturation is very common for
highlight pixels in real photos, and we find that previous methods
tend to overextract the highlight layer and leave some black arti-
facts on the diffuse layers, as shown in Figure A.6 and the last two
examples in Figure A.7.

Visual comparisons on real images under natural
lighting
Besides synthetic images and real images under lab illumination,
we also show qualitative comparisons on real images under natu-
ral lighting collected from the Internet in Figure A.8. We can see
that our method succeeds in predicting plausible separations of dif-
fuse layers and highlight layers, for cases with subtle highlights
(the first example), glossy metal surfaces (second), and very strong
highlights (third).

Highlight separation for grayscale images
Other than highlight extraction of color images, one advantage of
CNN-based methods is that the CNNs trained from color images
can also be used on grayscale images, in contrast to conventional
methods which rely on color analysis based on the dichromatic
model and/or piecewise diffuse colors.

For tests on grayscale images, we obtain the predicted highlight
in grayscale by averaging its values over the three channels. Sub-
tracting the grayscale highlight layer from the input image gives
the diffuse layer. Qualitative results on real images are shown in
Figure A.9.

Additional results of intrinsic image
decomposition

In this section, additional qualitative comparisons of intrinsic im-
age decomposition on ShapeNet Intrinsics Dataset and the IIW
(Intrinsic Images in the Wild) dataset are presented. Additionally,
quantitative and qualitative comparisons are given for the MIT in-
trinsics dataset.

MIT intrinsics dataset
We test our method on the MIT intrinsic image dataset (Grosse
et al. 2009), which contains real images under white illumination
with mostly Lambertian objects. For this evaluation, we use S-Net
alone, because highlights are merged into the shading in the ground
truth decomposition, modeled as I = A·S. Since highlights are not
correctly represented in this model, the resulting shading contains
distortions due to highlight, which we aim to approximate by using
S-Net instead of our full system to recover shading. Despite this
less-than-ideal scenario for our method, it still produces reasonable
results.

Table A.1 summarizes the LMSE (an error metric designed
specifically for the MIT intrinsics dataset) and MSE (scale-
invariant MSE) comparisons. Previous learning based methods,
e.g. (Shi et al. 2017), generally have problems on this dataset due to
the domain shift from synthetic image training to real image test-
ing. Compared to such methods, our S-Net has the advantage of
being trainable on multiview sets of real images. SIRFS obtains
the best results on this dataset. As noted in previous work (Shi et
al. 2017), SIRFS is built on priors that match the MIT dataset well
(e.g. mostly Lambertian surfaces, white lighting). However, such
priors cause SIRFS to be less effective on non-Lambertian objects,
as seen in the ShapeNet Intrinsic Dataset experiments.

In the table, we also show results of our S-Net with and without
finetuning on the standard MIT training split used by DI (Nari-
hira, Maire, and Yu 2015a). Due to our network structure, we only
use ground truth albedo in training and do not take advantage of

ground truth shading. Our shading is computed directly from the
additional hard constraint I = A · S once albedo is fixed. From
these comparison results, our system demonstrates its advantage of
being trainable on a broader range of real images (both fixed- and
multi-view).

Qualitative comparison examples are shown in Figure A.10. The
recovered albedo maps from our method have the highest resolu-
tion and most texture detail, while other learning-based methods
tend to obtain blurred results.

IIW dataset
We also evaluate our network on the Intrinsic Images in the
Wild (Bell, Bala, and Snavely 2014) testing set. As mentioned in
the main paper, our method is targeted on object-centric images
rather than scene images. The WHDR (the Weighted Human Dis-
agreement Rate) evaluation is in Table A.2. Quantitatively, our re-
sults are not as good as methods trained on scene images, but com-
pare favorably to Shi et al. (Shi et al. 2017), which is also trained
on object-centric images. As shown in Figure A.11, our network
also generates qualitative results comparable to Li and Snavely (Li
and Snavely 2018b) trained on scene photos. Comparisons to Shi
et al. (Shi et al. 2017) are shown in Figure A.12, which show that
even though our method and Shi et al. (Shi et al. 2017) are both
trained by object-centric images, our method generalizes better on
scene images, due to the benefits of real training images.

Visual comparisons on ShapeNet dataset
Other than the quantitative evaluations in the main paper, quali-
tative comparisons of intrinsic image decomposition on ShapeNet
Intrinsics Dataset are shown in Figure reffig:shapenetintrinsic and
Figure A.14. Here, our full net is used on these non-Lambertian ob-
jects, where input images are separated into highlight, albedo and
shading layers. All three predicted layers are shown in the figure.
By considering the additive highlight layer, albedos generated by
our method have much less artifacts on highlight regions.

Evaluation of end-to-end separations
To evaluate the performance of our end-to-end network, we sepa-
rate real images into highlight, diffuse, albedo, and shading layers
all at once, assuming the image formation model I = H+A·S. For
comparison, we combine the methods by Yang et al. (Yang, Wang,
and Ahuja 2010) for highlight separation and Shi et al. (Shi et al.
2017) for intrinsic image decomposition, which have state-of-the-
art performance for these tasks. The highlight in the input image
is first computed by the method by Yang et al. (Yang, Wang, and
Ahuja 2010) and separated from the input image. The remaining
diffuse image is then decomposed into albedo and shading by the
method of Shi et al. (Shi et al. 2017). As shown in Figure A.15, our
method shows better performance than the combination of Yang et
al. (Yang, Wang, and Ahuja 2010) and Shi et al. (Shi et al. 2017),
and performs well even on scenes with strong highlights and com-
plicated textures.

Training details
The structure of the end-to-end network is shown in Figure A.16.
Network structures of H-Net and S-Net are shared, which is a
encoder-decoder adopted from (Narihira, Maire, and Yu 2015b)
with an added batch normalization layer after each convolution
layer. In pretraining, the batch size is 32, and the network is pre-
trained for 1 epoch to provide a reasonable initialization for fine-
tuning. In the unsupervised finetuning phase by low-rank loss, at
each batch, 4 objects are randomly selected and 8 images of each
object are randomly selected, and then the network is finetuned for
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Figure A.6: Visual comparisons of highlight extraction on real images. For each example, the top row shows the input image
and separated diffuse layers, and the bottom row exhibits the separated highlight layers. Tan denotes (Tan and Ikeuchi 2005),
Yang denotes (Yang, Wang, and Ahuja 2010), Shen denotes (Shen and Zheng 2013), Shi denotes (Shi et al. 2017), Guo denotes
(Guo, Zhou, and Wang 2018), and GT denotes ground truth.

LMSE MSE
Method Training set albedo shading albedo shading

SIRFS(Barron and Malik 2013) MIT 0.0416 0.0168 0.0147 0.0083
DI(Narihira, Maire, and Yu 2015b) MIT+ST 0.0585 0.0295 0.0277 0.0154

Shi(Shi et al. 2017) SN 0.0752 0.0318 0.0468 0.0194
RT(Baslamisli, Le, and Gevers 2018) SN2 0.0652 0.0746 0.0128 0.0107

Ours SN+CP 0.0520 0.0416 0.0365 0.0272
Ours* SN+CP+MIT 0.0476 0.0284 0.0274 0.0145

Table A.1: Intrinsic decomposition on the MIT intrinsics dataset. For the training set, ST denotes ResynthSintel dataset(Narihira,
Maire, and Yu 2015b), SN denotes ShapeNet intrinsics dataset, SN2 denotes a similar synthetic dataset created by (Baslamisli,
Le, and Gevers 2018) rendered from ShapeNet models and CP denotes our Customer Photos Dataset. * indicates finetuning on
the MIT split used in DI.

10 epochs. In the joint finetuning phase, the network is finetuned
jointly until convergence, which is about 5 epochs.

Method DI Shi Zhou Li Ours
Training set ST SN IIW BT CP
WHDR% 37.3 59.4 19.9 20.3 51.1

Table A.2: Results on the IIW test set. Lower is better
for the Weighted Human Disagreement Rate (WHDR). ST,
BT denote Sintel(Butler et al. 2012) and BigTime(Li and
Snavely 2018b) respectively, which are scene datasets. SN
and CP denote ShapeNet Intrinsics(Shi et al. 2017) and our
Customer Photos datasets respectively, which are object-
centric datasets. We evaluate our method and several pre-
vious methods, namely DI(Narihira, Maire, and Yu 2015b),
Shi(Shi et al. 2017), Zhou(Zhou, Krahenbuhl, and Efros
2015) and Li(Li and Snavely 2018b), on this test set.
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Figure A.7: Qualitative comparisons of highlight separation on captured real images under lab illumination, with ground truth
obtained by cross-polarization. Tan denotes (Tan and Ikeuchi 2005), Yang denotes (Yang, Wang, and Ahuja 2010), Shen denotes
(Shen and Zheng 2013), Shi denotes (Shi et al. 2017), Guo denotes (Guo, Zhou, and Wang 2018), and GT denotes ground truth.
For each method, diffuse layers are shown in odd rows and highlight layers are shown in even rows.
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Figure A.8: Qualitative comparisons of highlight separation on real images under natural illumination collected from the Inter-
net, where ground truths are not available. Tan denotes (Tan and Ikeuchi 2005), Yang denotes (Yang, Wang, and Ahuja 2010),
Shen denotes (Shen and Zheng 2013) and Shi denotes (Shi et al. 2017). For each method, diffuse layers are shown in odd rows
and highlight layers are shown in even rows.
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Figure A.9: Qualitative results of highlight separation on grayscale images.
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Figure A.10: Visual comparisons of intrinsic image results on the MIT intrinsics dataset. SIRFS denotes (Barron and Malik
2013), DI denotes (Narihira, Maire, and Yu 2015b), Shi denotes (Shi et al. 2017) and RT denotes (Baslamisli, Le, and Gev-
ers 2018). Ours denotes our S-Net without finetuning on MIT, and Ours* denotes our S-Net after finetuning on MIT. Since
RT(Baslamisli, Le, and Gevers 2018) does not have code released, we use the images from their paper for the first two data,
and their results for the last two data are not available.
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Figure A.11: Qualitative comparisons to Li and Snavely (Li and Snavely 2018b) on scene images from the IIW dataset. (A)
denotes reflectance/albedo results, and (S) denotes shading results.
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Figure A.12: Qualitative comparisons to Li and Snavely (Li and Snavely 2018b) and Shi et al. (Shi et al. 2019) on scene images
from the IIW dataset. The odd rows are input image and albedo results, and the even rows are shading results.
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Figure A.13: Visual comparisons of intrinsic image decomposition on testing data from the ShapeNet Intrinsic Dataset. For
the first column, odd rows show input images and even rows show our separated highlights. SIRFS denotes (Barron and Malik
2015), DI denotes (Narihira, Maire, and Yu 2015b), Shi denotes (Shi et al. 2017), and Li denotes (Li and Snavely 2018b).
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Figure A.14: Additional visual comparisons on ShapeNet Intrinsics Dataset. For the first column, input images are shown at odd
rows, our separated highlight layers are shown at even rows. SIRFS denotes (Barron and Malik 2015), DI denotes (Narihira,
Maire, and Yu 2015b), Shi denotes (Shi et al. 2017), and Li denotes (Li and Snavely 2018b).
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Figure A.15: Qualitative comparisons on real images. We compare our end-to-end separation of highlight, diffuse, albedo and
shading layers to the combination of Yang et al. (Yang, Wang, and Ahuja 2010) for highlight separation and Shi et al. (Shi et
al. 2017) for intrinsic image decomposition, which have the second best performance in quantitative evaluations. The odd rows
are our results, and even rows are results of Yang et al. (Yang, Wang, and Ahuja 2010) and Shi et al. (Shi et al. 2017).
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Figure A.16: The structure of our end-to-end network which separates highlight, albedo and shading jointly from a image. The
structures of H-net and S-Net are shared, which is adopted from (Narihira, Maire, and Yu 2015b) with added batch normalization
layers after convolution layers.


