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Abstract
Sentence Split and Rephrase aims to break down a complex
sentence into several simple sentences with its meaning pre-
served. Previous studies tend to address the issue by seq2seq
learning from parallel sentence pairs, which takes a complex
sentence as input and sequentially generates a series of simple
sentences. However, the conventional seq2seq learning has
two limitations for this task: (1) it does not take into account
the facts stated in the long sentence; As a result, the gener-
ated simple sentences may miss or inaccurately state the facts
in the original sentence. (2) The order variance of the sim-
ple sentences to be generated may confuse the seq2seq model
during training because the simple sentences derived from the
long source sentence could be in any order.
To overcome the challenges, we first propose the Fact-aware
Sentence Encoding, which enables the model to learn facts
from the long sentence and thus improves the precision of
sentence split; then we introduce Permutation Invariant Train-
ing to alleviate the effects of order variance in seq2seq
learning for this task. Experiments on the WebSplit-v1.0
benchmark dataset show that our approaches can largely
improve the performance over the previous seq2seq learn-
ing approaches. Moreover, an extrinsic evaluation on oie-
benchmark verifies the effectiveness of our approaches by an
observation that splitting long sentences with our state-of-the-
art model as preprocessing is helpful for improving OpenIE
performance.

1 Introduction
Long and complicated sentences prove to be a stumbling
block for computers to process human languages. If com-
plex text can be made shorter and simpler, sentences will
become easier to understand, which will benefit a number of
natural language processing (NLP) tasks such as Informa-
tion Extraction.

With this motivation, Sentence Split and Rephrase task
was proposed (Narayan et al. 2017), focusing on simplify-
ing a complicated sentence by splitting and rephrasing it
into simple sentences. Previous studies (Narayan et al. 2017;
Aharoni and Goldberg 2018; Botha et al. 2018) tend to
formulate this problem into a seq2seq learning framework,
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(a) Examples of Misrepresented Facts

Source The author of Aenir is Garth Nix and is
available in print.

Facts 〈Aenir, author, Garth Nix〉
〈Aenir, available, in print〉

Target The author of Aenir is Garth Nix. [SEP]
Aenir is available in print.

seq2seq The author of Aenir is Garth Nix. [SEP]
Garth Nix is available in print.

(b) Examples of Sentence Order Variance

Source
Test pilot Alan Bean was born on March
15th, 1932 in Wheeler, Texas and grad-
uated with a B.S. from the University of
Texas in 1955 .

Target (order1)

Alan Bean performed as a test pilot. [SEP]
Alan Bean was born on March 15, 1932.
[SEP] The Alma Mater of Alan Bean is
UT Austin, B.S. 1955. [SEP] Alan Bean
’s birthplace is Wheeler, Texas .

seq2seq (order2)

Alan Bean was born in Wheeler, Texas.
[SEP] Alan Bean was a test pilot. [SEP]
Alan Bean was born on March 15th, 1932.
[SEP] Alan Bean graduated from the Uni-
versity of Texas with a B.S. in 1955.

Table 1: Examples of sentences generated by the seq2seq
model. (a) illustrates misrepresented facts (yellow) in the
generated results; (b) shows two split order of simple sen-
tences drived from the source. The sentence order variance
may confuse the model during training, tweaking the model
against its previously learning patterns and affecting the sta-
bility of training. Best viewed in color.

which takes the complex sentence as input and sequentially
generates a series of simple sentences. Despite the certain
effectiveness of these approaches, their limitations are obvi-
ous: (1) conventional seq2seq learning does not take into ac-
count the facts stated in the original sentence; As a result, the
facts are likely to be misrepresented or missed in the gener-
ated simple sentences, as Table 1(a) illustrates. (2) The vari-
ance of the order of simple sentences to be generated may
confuse the seq2seq model because the simple sentences de-
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Figure 1: The overview of our model architecture. The Sentence Encoder Es encodes the complex sentence
(w1, w2, w3, · · · , wn) into a representation vector hs, which is shared by two tasks: sentence split and rephrase, and fact
classification. For sentence split and rephrase, Decoder D takes hs as input and generates a series of simple sentences. For fact
classification, Fact Encoder Ef encodes the fact f = 〈arg1, r, arg2〉 into a representation vector hf , which will be fed into a
classifier to determine whether f is true or not based on a sentence s. The model is trained in a multi-task learning fashion and
the final loss is a weighted sum of the losses of the two tasks. Specifically, the loss of sentence split and rephrase task is obtained
by the Permutation Invariant Training strategy which chooses the minimal loss among all the permutation assignments. Best
viewed in color.

rived from the long source sentence could be in any order.
As Table 1(b) shows, if the sentence order in the target of
a training instance is opposite to the way that the seq2seq
model used to split, the model will be confused and tweaked
against its previously learned patterns, affecting the stability
of training.

To address these challenges, we propose a novel approach
for this task with Fact-aware Sentence Encoding (FaSE) and
Permutation Invariant Training (PIT). Fact-aware Sentence
Encoding enhances the encoder of the seq2seq model by
leveraging multi-task learning paradigm: it trains the sen-
tence encoder not only for the Sentence Split and Rephrase
task but also for judging whether a given fact is true or false
based on the sentence, resulting in a fact-aware text encoder
that is helpful for accurate sentence splitting; while Permuta-
tion Invariant Training, which has been widely used to solve
the label permutation problem in the task of multi-talker
speech separation, is introduced to find the best permutation
of the simple sentences in the reference that yields the mini-
mal loss for avoiding learning against the previously learned
patterns.

Experiments on the WebSplit-v1.0 benchmark show that
our proposed Fact-aware Sentence Encoding and Permuta-
tion Invariant Training can largely improve the performance
over the conventional seq2seq models and achieve the state-
of-the-art result. Moreover, an extrinsic evaluation carried
out in oie-benchmark verifies that splitting long sentences
with our approach as preprocessing is helpful for improving

the performance of OpenIE.
Our contributions are summarized as follows:

• We propose a novel Fact-aware Sentence Encoding
approach that enables the model to learn facts from
sentences for improving the accuracy of Sentence
Split and Rephrase.
• We are the first to introduce Permutation Invariant

Training for Sentence Split and Rephrase task to
alleviate the effects of sentence order variance in
seq2seq learning.
• We advance the state-of-the-art in Sentence Split and

Rephrase task, and show that our Sentence Split and
Rephrase model can effectively simplify long and
complicated sentences to improve the performance
of OpenIE.

2 Background
2.1 Sentence Split and Rephrase
As the examples shown in Table 1, Sentence Split and
Rephrase task aims to split a complex sentence into several
simple sentences with meaning preserved. Formally, given a
complex source sentence s, we expect to derive a list of sim-
plified sentences (t1, t2, · · · , tK), where tk is one simpli-
fied sentence. The entries in the list (t1, t2, · · · , tK) should
rephrase different parts of s, and should be faithful to the
facts in s. It is notable that the number of simplified sen-
tences to be generated (i.e., K) is not given; in other words,



Source A Wizard of Mars, by Diane Duane, has OCLC number 318875313 and
ISBN number 978-0-15-204770-2.

Positive 〈A Wizard of Mars, author, Diane Duane〉
〈A Wizard of Mars, OCLC number, 318875313〉

Negative(Relation) 〈A Wizard of Mars, has, Diane Duane〉
Negative(Arg) 〈A Wizard of Mars, OCLC number variation, 978-0-15-204770-2〉

Table 2: Examples of data instances for fact classification. Positive examples are obtained from WebNLG and RNNLG, while
negative examples are derived by corrupting the facts in the positive instances in two ways: Negative(Relation) replaces the
relation in positive instances with a random relation in other facts; Negative(Arg) corrupts the positive instances by replacing
one word in arg1 or arg2 with a random word in the source sentence. We construct negative examples with the two corruption
strategies with the equal probability.

a model has to determine K by itself while splitting a com-
plex sentence.

2.2 Sequence-to-Sequence Learning
Sequence-to-sequence (seq2seq) learning achieves tremen-
dous success in many NLP tasks. A typical seq2seq model
consists of an encoder and a decoder. The encoder first con-
verts the input sentence s into dense vector representation h,
and then the decoder generates the target sentence t based on
h.

In practice, the encoder and the decoder are jointly trained
by minimizing the negative log-likelihood of parallel source-
target sentence pairs in the training set. At the inference
time, an output sentence is generated in an auto-regressive
manner by finding the most likely token sequence through
beam search.

As previous work, when applied to Sentence Split and
Rephrase task, a seq2seq model takes the complex sentence
s as its input (i.e., source sentence). Its corresponding output
t (i.e., target sentence) is its simplified sentences which are
concatenated by a special token “[SEP]” indicating sentence
boundaries, as the examples in Table 1 shows.

3 Methodology
As introduced in Section 1, conventional seq2seq learning
has obvious limitations for Sentence Split and Rephrase
task: (1) it is not fact-aware and thus likely to misrepre-
sent the facts in the simplified sentences; (2) it is sensitive
to sentence order variance in the training data, resulting in
an unstable training process. To overcome the limitations,
we propose to improve seq2seq learning for this task by: (a)
enhancing the text encoder by making it become fact-aware;
(b) introducing Permutation Invariant Training to alleviate
the issue of sentence order variance to stabilize the training
process. The overview of our approach is illustrated in Fig-
ure 1. We will introduce the details of Fact-aware Sentence
Encoding and Permutation Invariant Training in the remain-
ing parts of this section.

3.1 Fact-aware Sentence Encoding
To make the model become fact-aware, we propose to en-
hance the encoder through a multi-task learning. As Figure
1 shows, the sentence encoder Es is trained in a multi-task
learning fashion: it is not only trained for the Sentence Split

and Rephrase task, but also for judging (i.e., classifying)
whether a given fact f = 〈arg1, r, arg2〉 is true or false
based on a sentence, where r is the relation of the arguments
arg1 and arg2. With the supervision of the fact classifica-
tion objective during training, the sentence encoder Es will
become more likely to accurately capture key facts from the
sentence and yield fact-aware sentence encoding representa-
tion hs.

For training such a fact-aware seq2seq model for Sentence
Split and Rephrase, we optimize for the following objective:

L = λLG + (1− λ)LC (1)

where LG is the loss for the task of Sentence Split and
Rephrase, LC is the loss for the task of fact classification,
and λ is the hyper-parameter to control the weights for the
two tasks.

As introduced in Section 2, the loss LG for Sentence Split
and Rephrase can be optimized through maximum likeli-
hood estimation (MLE) on parallel source (i.e., the complex
sentence s) - target (i.e., the concatenated simplified sen-
tences t1[SEP]t2 · · · [SEP]tK) pairs1.

For optimizing loss LC for fact classification, we first col-
lect sentence-fact pairs 〈s, f〉, where s is a sentence and
f = 〈arg1, r, arg2〉, from WebNLG (Gardent et al. 2017)
and RNNLG (Wen et al. 2016). To construct negative exam-
ples for fact classification, we corrupt the fact f by replacing
one word in arg1 or arg2 with a random word in s, or re-
placing r with a random relation r∗ in other facts. Table 2
gives an example of the data instances for fact classification.

During training2, we use the equal number of training ex-
amples for the fact classification task and the Sentence Split
and Rephrase task within a batch.

3.2 Permutation Invariant Training
As introduced in Section 1, the issue of sentence order
variance affects seq2seq learning for Sentence Split and
Rephrase and consequently makes the model training very
unstable. Inspired by the successful practice of Permutation
Invariant Training to solve the label permutation issue in the

1For simplicity, we call such pairs C-S pairs in the following
parts of this paper.

2In our experiments, the loss LG and LC in Eq (1) are the sum
of the loss in the corresponding tasks in a batch.



BLEU #S/C #T/S

Reference - 2.5 10.9

SOURCE 57.2 1.0 20.5
SPLITHALF 55.7 2.0 10.8
LSTM(AG18) (Aharoni and Goldberg 2018) 25.5 2.3 11.8
LSTM (BOTHA-WEBSPLIT) (Botha et al. 2018) 30.5 2.0 8.8

OURS

LSTM (Baseline) 32.5 2.6 9.8
LSTM + PIT 34.7 2.5 9.9
LSTM + FASE 34.2 2.4 9.8
LSTM + FASE + PIT 37.3 2.4 9.9

Table 3: Results on the WebSplit-v1.0. SOURCE means directly taking the unmodified source complex sentence as prediction.
SPLITHALF means deterministically spliting a complex sentence into two equal-length token sequences and appending a period
to the first one. LSTM (AG18) refers to the model in Aharoni and Goldberg(2018). LSTM (BOTHA-WEBSPLIT) refers to the
previous state-of-the-art proposed in (Botha et al. 2018). In our implementation, we observe that both PIT and FASE can bring
a profit to the LSTM baseline. And LSTM + PIT + FASE which means the combination of PIT and FASE achieves a new
state-of-the-art.

task of multi-talker speech separation, we propose to intro-
duce Permutation Invariant Training in Sentence Split and
Rephrase task.

The key idea of Permutation Invariant Training is to find
the best permutation of the simplified sentences in the ref-
erence that yields the minimal loss to update the model. To
make it easy to understand, we use the illustration inside the
dashed rectangular in Figure 1 to visualize this process. In
Figure 1, the complex sentence s corresponds to three sim-
ple sentences t1, t2 and t3. We first enumerate all permu-
tation assignments (total number of 3! = 6) from the three
simple sentences, and then compute the loss for each assign-
ment. Finally, we choose the permutation with the minimal
loss (i.e., assignment 3 in Figure 1) to update the model. In
this way, the issue of sentence order variance can be allevi-
ated, helping the model avoid learning against its previously
learned patterns and stabilize the training process.

3.3 Inference
At inference time, our model behaves totally the same as
conventional seq2seq models, which takes the complex sen-
tence as the input, and generates concatenation of simple
sentences in an auto-regressive manner by finding the most
likely token sequence through beam search.

4 Experiments
4.1 Data
We conduct experiments on the WebSplit-v1.0 corpus,
which is a benchmark dataset to compare the performance
of models for Sentence Split and Rephrase task. Its train-
ing set contains approximately 1.3 million C-S pairs; while
its validation and test sets contain about 4,000 complex sen-
tences, each of which is equipped with multiple references.

For Fact-aware Sentence Encoding with multi-task learn-
ing, we construct a fact classification dataset based on the
method mentioned in Section 3.1. The resulting dataset con-
tains 94,930 training samples where half are positive and the

other are negative samples constructed by fact corruption.

4.2 Evaluation Setting
Model Configuration As previous work (Aharoni and
Goldberg 2018; Botha et al. 2018), we use 1-layer LSTM
(512 hidden units) encoder-decoder model with attention
and copy mechanism (Gu et al. 2016) as our seq2seq model.
For fact classification, as illustrated in Figure 1, we first use
a CNN layer with Relu activation and max-pooling to gen-
erate a fixed length vector h∗

s from hs, then concatenate h∗
s

with the fact vector hf encoded by a fact encoder Ef which
is also a CNN layer with the same configuration: filter size
n = 3, 4, 5 and filter number 24 for each size. To train the
models, we use all the words (7k) in the training data as the
vocabulary for both source and target. We use the Adam op-
timizer with a learning rate of 0.0005 with 8000 warmup
steps. The training process lasts 30 epochs with the batch
size of 64. During inference, the beam size is set to 12.

Evaluation Metrics Following the prior research in the
Websplit-v1.0 benchmark (Botha et al. 2018; Aharoni and
Goldberg 2018), we report the sentence-level BLEU3 and
length based statistics to quantify splitting.

4.3 Results
For experiment results presented in Table 3, we see that our
proposed methods largely improve the performance com-
pared to the conventional seq2seq learning approaches. Sur-
prisingly, the combination of PIT and FaSE (PIT + FASE)
achieves 37.3 BLEU score, outperforming the best previ-
ously reported model trained on the WebSplit-v1.0 (BOTHA-
WEBSPLIT) by more than 6.8 BLEU, and gains 4.8 BLEU
over our stronger baseline. As an ablation study, we ob-
serve that the single FaSE brings 1.7 BLEU improvement
compared to the baseline model training without facts. This

3The sentence-level BLEU score calculated by the evaluation
script in https://github.com/roeeaharoni/sprp-acl2018



BLEU #S/C #T/S

Reference - 2.5 10.9

SOURCE 57.2 1.0 20.5
SPLITHALF 55.7 2.0 10.8
DISSIM (Niklaus et al. 2019) 59.7 2.7 9.2
BOTHA-BOTH (Botha et al. 2018) 60.1 2.0 11

OURS

TRANSFORMER 69.7 2.3 10.1
TRANSFORMER+ PIT 70.5 2.5 9.9
TRANSFORMER + FASE 70.7 2.3 9.8
TRANSFORMER+ FASE + PIT 71.0 2.4 9.8

Table 4: Results of pre-training experiments on the WikiSplit. TRANSFORMER denotes basic pre-trained Transformer model
and TRANSFORMER+PIT additionally incorporates the PIT strategy into training. FASE denotes the single Fact-aware Sentence
Encoding proposed in 3.1 , and FASE+PIT represents the combination of FaSE and PIT. Note that the FaSE and the PIT are
applied at the fine-tune stage, we just pre-train the seq2seq (Transformer) model on the WikiSplit.

BLEU #S/C #T/S
LSTM-MAX 23.9 2.7 9.6
LSTM-RANDOM 25.9± 1.2 2.6± 0.3 9.5± 0.1
LSTM-MIN (PIT) 34.7 2.5 9.7

Table 5: Results of experiments on sentence order variance
problem. MAX, MIN denotes choosing the permutation with
the max loss, min loss separately. And RANDOM represents
randomly selecting one permutation. Note that MIN here
is exactly the PIT strategy. For the “Random” setting, we
launch the training process with different seeds five times
and then calculate their mean and standard deviation.

demonstrates the effectiveness of the FaSE which helps the
text encoder explicitly capture more fact information from
the source sentence, leading to a higher accuracy for the
sentence splitting. On the other hand, the PIT strategy con-
tributes 2.2 BLEU improvement to LSTM (Baseline). The
significant improvement proves that PIT can help the model
better learn to split and rephrase without being distracted by
the trivial sentence order issue.

Order Variance Exploration Additionally, we conduct
experiments to investigate to what extent sentence order
variance influences the performance of the Sentence Split
and Rephrase task. Specifically, the experiments are con-
ducted in three settings: MAX, RANDOM and MIN. MAX
and MIN denote choosing the permutation with the max loss
and min loss, respectively. And RANDOM represents ran-
domly selecting one permutation. Note that MIN here is ex-
actly the PIT strategy introduced in 3.2.

As shown in Table 5, it is obvious that MIN (PIT) out-
performs the others by a substantial margin and MAX per-
forms the worst as expected. Furthermore, it is interesting
to observe the instability of the RANDOM according to the
high standard deviation of 1.2. Apparently, the conventional
seq2seq models are sensitive to the uncertainties brought by
the sentence order variance, because they will be confused
and tweaked against its previously learned patterns.

Large-scale Data Boosting To further verify the perfor-
mance of our methods on large-scale datasets, we incorpo-
rate the WikiSplit (Botha et al. 2018) data for pre-training.
The WikiSplit contains approximately 1.0 million C-S pairs
on a rich and varied vocabulary mined from the Wikipedia
edit histories. When using the WikiSplit for pre-training, all
texts are encoded with byte-pair-encoding (Sennrich, Had-
dow, and Birch 2015) through sub-word units, which has a
shared source-target vocabulary of about 33,000 words. We
choose the base Transformer (Vaswani et al. 2017) architec-
ture equipped with the copy mechanism (Gu et al. 2016).
The pre-training process on the WIKISPLIT lasts 10 epochs
with the max tokens 2,048 for each batch. And the fine-
tuning process on the WEBSPLIT lasts 30 epochs with the
batch size of 32 sentences. We use Adam to optimize the
model with a learning rate 5e-4 at the pre-training stage and
5e-5 at the fine-tuning stage. Other parameters are consistent
with the settings described in Section 4.2.

As shown in Table 4, due to its large amount and great
diversity, the WIKISPLIT can be used to bootstrap the full
model. And after applying our approaches to the stronger
baseline, a new state-of-the-art performance of 71.0 BLEU
score is obtained, which outperforms the baseline by 1.3
BLEU score. Furthermore, this state-of-the-art model is
adopted to investigate whether our model can benefit down-
stream task OpenIE in Section 4.4.

Human Evaluation Human evaluation is conducted on a
subset of 50 randomly sampled sentences by two non-native,
but fluent-English speakers who rated each C-S pair from
3 aspects: grammaticality (G), meaning preservation (M)
and structural simplicity (S). Annotation guidelines are de-
scribed in the Appendix A in Niklaus et al.(2019). The inter-
annotator agreement was calculated using the Pearson corre-
lation, resulting in rates of 0.64 (G), 0.66 (M) and 0.70 (S).
As shown in Table 6, our model is rated higher than other
baselines in all dimensions and performs close to the golden
simple references. The results suggest that our model can
transform the complex sentences into several simple sen-
tences that achieve a high level of grammaticality and pre-



(a) indomain (b) oie-benchmark

Figure 2: Performance of the Stanford OPENIE system with or without “Split and Rephrase” model as a preprocessing step.
“DisSim Stanford” and “Botha Stanford” denote the Niklaus et al.(2019) and Botha et al.(2018) separately in the preprocessing
step. “Our Stanford” denotes the model in this paper.

serve the meaning of the input.

G M S avg.
SIMPLE REFERNCE 4.92 4.64 1.67 3.74

BOTHA (Botha et al. 2018) 3.95 3.77 0.76 2.83
DISSIM (Niklaus et al. 2019) 4.27 3.65 1.1 3.01
FASE+PIT 4.78 4.4 1.69 3.62

Table 6: Human evaluation results on a random sample of 50
sentences on the WebSplit-v1.0.

4.4 Extrinsic Evaluation On OpenIE
To further validate the effectiveness of our model on down-
stream tasks, we use the state-of-the-art model as the prepro-
cessing tool for the Stanford OPENIE (Angeli, Premkumar,
and Manning 2015) system. More specifically, we firstly use
our model to transform the input complex sentence into sev-
eral simple sentences, and then send them to the Stanford
OPENIE system for information extraction.

We conduct experiments on an in-domain evaluation set
extracted from the WebSplit-v1.0 (Narayan et al. 2017) and
the oie-benchmark (Stanovsky and Dagan 2016) separately.
Table 7 gives statistics on the in-domain evaluation set and
the oie-benchmark. We compare the performance w/ and
w/o our model applied as a preprocessing step. The evalu-
ation metrics are precision and recall.

In-domain Evaluation Here we describe the construc-
tion of the in-domain evaluation set. The WebSplit-
v1.0 (Narayan et al. 2017) maps one complex sentence to
a series of simple sentences which convey the same mean-
ing, together with RDF triples that describe their seman-
tics. Taking advantage of the provided RDF triples, we pro-
duce an in-domain evaluation set including all complex sen-
tences in the WebSplit-v1.0 test data. For each complex sen-
tence, not only its own RDF triples are included, but also
the RDF triples that are related to its simple sentences. The

sentences relations avg (#R/S)
in-domain 930 2,585 2.8
oie-benchmark 3,200 10,359 3.2

Table 7: Corpus statistics in terms of sentences, relations and
average number of relations per sentence (avg) on the in-
domain evaluation set and the oie-benchmark.

WebSplit-v1.0 test data consists of 930 unique complex sen-
tences mapping to 43,968 simple sentences. In total, we ex-
tract 2,585 relation triples as the in-domain evaluation set.

Oie-benchmark Evaluation The experiments above
mainly focus on the in-domain setting. To evaluate the gen-
eralization of our model, we further conduct experiments
on the out-domain setting. We choose the popular large
benchmark oie-benchmark (Stanovsky and Dagan 2016)
which contains 3,200 sentences with 10,359 extractions for
evaluation.

Analysis We use the script in oie-benchmark4 to evaulate
the pecision and recall of different models. Figure 2
shows the precision-recall curves of the in-domain and oie-
benchmark experiments. We also make a comparison among
using our model and the other two models (Botha et al. 2018;
Niklaus et al. 2019) in the preprocessing step. It is observed
that our model can provide a strong bootsting for the Stan-
ford OpenIE system. We think the key reason is that our
model turns the complex sentence into several faithful sim-
ple sentences and thus solves the OpenIE task in a divide-
and-conquer manner, which makes the relation extraction
process easier. We also give some examples in Table 8 which
shows that sentences in a new domain are also well pro-
cessed thus proving the good generalization of our model.
Clearly, the results taken together demonstrate the effective-
ness of our approaches.

4https://github.com/gabrielStanovsky/oie-benchmark



Input (Complex Sentence) Output (Simple Sentences)
A different judge then ordered the case reviewed by
a higher court.

A different judge then ordered the case. [SEP] The case
was reviewed by a higher court.

From 1909 to 1912, the Miami Canal was dug, by-
passing the rapids at the head of the North Fork.

Miami Canal was dug from 1909 to 1912. [SEP] The
Miami Canal bypassed the rapids at the head of the
North Fork.

Green is also a significant color, symbolizing the
union of the three colors.

Green is a significant color. [SEP] Green symbolizes
the union of the three colors.

Wynne married Mary Ellen McCabe, daughter of a
wealthy construction contractor.

Wynne married Mary Ellen McCabe. [SEP] Mary Ellen
McCabe is the daughter of a wealthy construction con-
tractor.

As a successful young businessman in Detroit,
Chandler supported the Underground Railroad.

Chandler was a successful young businessman in De-
troit. [SEP] Chandler supported the Underground Rail-
road .

He was a member of the European Convention,
which drafted the text of the European Constitution
that never entered into force.

He was a member of the European Convention. [SEP]
European Convention drafted the text of the European
Constitution. [SEP] The European Constitution never
entered into force.

Table 8: Examples of sentences in the oie-benchmark preprocessed by our model.

5 Related Work
Split and Rephrase More recently, Narayan et al.(2017)
proposes a new sentence simplification task dub “Split and
Rephrase” and meanwhile introduces the WebSplit corpus,
a dataset of over one million tuples which maps a single
complex sentence to a sequence of simple sentences. They
also release a series of seq2seq models trained on the Web-
Split. Since then, this newly raised task has received a lot
attention and various efforts have been made on data-driven
approaches. Aharoni and Goldberg(2018) then improve the
WebSplit by reducing overlap in the data splits and present-
ing the neural model equipped with the copy mechanism.
Even so, the encoder-decoder based models still perform
poorly and Botha et al.(2018) discovers that the sentences
in the WebSplit corpus contain fairly unnatural linguistic
expressions on a small vocabulary. Then they introduce a
new training data mined from the Wikipedia edit histories,
which includes a rich and varied vocabulary naturally ex-
pressed sentences and their extracted splits. However, the
WikiSplit is limited to provide strong supervision because
targets in it are not always the golden split of the source.
Different from the former data-driven approaches, Niklaus
et al.(2019) proposes a recursive method using a set of hand-
crafted transformation rules to split and rephrase complex
English sentences into a novel semantic hierarchy of sim-
plified sentences, whereas, rule-based approaches tend to be
extremely labor intensive to create and have very poor gen-
eralization.

Permutation Invariant Training (PIT) Permutation In-
variant Training (Yu et al. 2017; Chen, Luo, and Mesgarani
2017; Kolbæk et al. 2017) is a training strategy which ef-
fectively solves the long-lasting label permutation prob-
lem for deep learning based speaker independent multi-
talker speech separation. The label permutation problem,
also known as the label ambiguity problem, comes from
the assignment between the separated frames and the golden
frames. During training, the error between the clean mag-
nitude spectra a1,i and a2,i and their estimated counterparts

â1,i and â2,i needs to be computed. However, the one-to-
one correspondence between the separated frames and the
golden frames is unknown. To solve this issue, the PIT first
determines the best output-target assignment and then mini-
mizes the error given the assignment. This strategy, which is
directly implemented inside the network structure, elegantly
solves the problem which has prevented progress on deep
learning based techniques for speech separation.

6 Conclusion

In this paper, we present a novel framework for the Sentence
Split and Rephrase task consisting of Fact-aware Sentence
Encoding (FaSE) and Permutation Invariant Training (PIT).
To address the limitations of the conventional seq2seq meth-
ods for this task, the FaSE leverages the multi-task learning
paradigm to make the text encoder more fact-aware and thus
generates faithful simple sentences, and the PIT strategy al-
leviates the issue brought by sentence order variance to sta-
bilize the training process. Extensive experiments demon-
strate that both FaSE and PIT can bring a profit to the base-
line model, and that their combination further improves the
result and achieves the state-of-the-art performance on the
WebSplit-v1.0 benchmark. Also, the profits on the OpenIE
task verify that using our model as a preprocessing tool can
facilitate this task and improve the performance, demonstrat-
ing the potential of our work for benefiting downstream NLP
tasks.
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