
Segment-then-Rank: Non-factoid Question Answering on Instructional Videos

Kyungjae Lee1∗, Nan Duan2, Lei Ji2,3, Jason Li4, Seung-won Hwang1†
1Department of Computer Science, Yonsei University, Seoul, South Korea

2Microsoft Research Asia, Beijing, China
3University of Chinese Academy of Science, Beijing, China

4STCA Multimedia Group, Microsoft, Beijing, China
{lkj0509,seungwonh}@yonsei.ac.kr, {nanduan,leiji,jasonli}@microsoft.com

Abstract

We study the problem of non-factoid QA on instructional
videos. Existing work focuses either on visual or textual
modality of video content, to find matching answers to the
question. However, neither is flexible enough for our prob-
lem setting of non-factoid answers with varying lengths. Mo-
tivated by this, we propose a two-stage model: (a) multimodal
segmentation of video into span candidates and (b) length-
adaptive ranking of the candidates to the question. First, for
segmentation, we propose Segmenter for generating span can-
didates of diverse length, considering both textual and visual
modality. Second, for ranking, we propose Ranker to score
the candidates, dynamically combining the two models with
complementary strength for both short and long spans re-
spectively. Experimental result demonstrates that our model
achieves state-of-the-art performance.

1 Introduction
Question Answering (QA) over videos is one of impor-
tant problems in both NLP and computer vision fields.
Recently, with the creation of various datasets, such as
TVQA (Lei et al. 2018), TGIF-QA (Jang et al. 2017), and
MovieQA (Tapaswi et al. 2016), techniques for video-based
QA have been advanced rapidly. However, these datasets
commonly assume that the answer is a short text based on
concise facts (e.g., question “What is the color of the bird?”
can be answered by “White”), while users may want to find
longer non-factoid answers to questions such as “how” and
“why” types. However, non-factoid QA on video contents,
has been relatively under-studied.

For non-factoid questions, existing works focus on doc-
ument (Yin 2006) or video retrieval (Li et al. 2009; Nie et
al. 2011). Given a question, they aim to rank a relevant list
of documents or videos as results. However, returning the
entire document is too coarse-grained and requires users to
read the entire document. Instead, WikiPassageQA task (Co-
hen, Yang, and Croft 2018) uses pre-segmented paragraphs
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(a) Distribution of answer/video lengths in our dataset
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(b) Performance of two SOTA models over answer lengths (details
in Section 4)

Figure 1: Two challenges of our research.

in the text, to return a finer-granular answer as the highest-
scoring paragraph. However, this approach cannot apply to
videos without clear semantic segmentations such as para-
graphs in documents.

Inspired, we aim to extract a fine-grained answer to non-
factoid questions, especially, “how-to” questions over in-
structional videos. Figure 2 illustrates an example, when
user poses a question “How to replace a battery from
galaxy?”; a desirable answer is annotated as a fine-granular
span from 00:41 to 02:50 seconds.

For videos without pre-segmentation, a naive solution to
generate span candidates is “split-then-rank” (Cheng et al.
2016; Gao et al. 2017; Liu et al. 2018), by splitting the video
into fixed-size clips, then ranking each clip by their rele-
vance to the question. However, there are two challenges left
unaddressed in this solution. First, it cannot support diverse
answer lengths, commonly observed for non-factoid QA, as
well as in our dataset. In Figure 1(a), we can observe that
the answer length varies in the range of 1 to 30 sentences.
Second, when ranking the candidates after segmentation, an



I'm going to show
you how to replace

the battery in Galaxy.

Take caution and be
patient as it's easy to
break components.

We're going to try to
remove the back panel.

You should be able to
lift the back panel
from the phone.

To remove the battery,
we need to pry a bit of 
adhesive to get it out.

Now, you shoud be
able to lift the display

from the phone.

Don't forget to
subscribe to our

YouTube channel

Question: How to replace a battery from Galaxy

00:04-00:09 00:31-00:35 00:41-00:45 01:49-01:56 02:32-02:50 05:01-05:08 05:14-05:20

woman, watermark, 
wall, television woman, wall phone, finger, 

thumb
phone, finger, 

hand, case
phone, finger, panel,

case, buttons phone, finger women, wall

https://www.youtube.com/watch?v=k8eoiVUxA0A

Answer: Start 00:41, End 02:50

Figure 2: An example of our task. While the video describes how to replace a battery and screen from smart phone, the answer
corresponding to the given question is located between 00:41 and 02:50 seconds.

accurate scoring model for a short answer is not accurate for
long (and vice versa). Figure 1(b) contrasts relevance scor-
ing accuracy of two SOTA algorithms (details in Section 4).

To address these challenges, we propose a two-stage
approach, Segmenter-Ranker, by using a coarse-to-fine
schema. The first step is a multimodal Segmenter to output
span candidates with varying lengths. The goal of our Seg-
menter is to predict semantic boundaries dependent on the
given question/video, considering both transcripts and visual
contents in the video. To motivate why we need to consider
multimodality, we revisit Figure 2: In the example, consider-
ing visual objects phone and finger extracted from a detector
is critical, to exclude the greeting part in the first two clips
not showing relevant visual contents. Using both transcripts
and visual features, Segmenter suggests several begin- and
end-clips as semantic boundaries, then top-k spans are iden-
tified to pass on to the next phase.

The second step is to design length-adaptive Ranker to
ensure precision by re-ranking the answer candidates of
varying sizes identified from Segmenter. As above men-
tioned, there is no single winner in our setting with varying
lengths. More formally, according to Guo et al. (2019), exist-
ing work is categorized into representation- and interaction-
based approaches with such complementary strength, shown
as Algo1 and 2 respectively in Figure 1(b). Our contribu-
tion, to cover diverse length scenarios, is to adaptively com-
bine representation- and interaction-based approaches with
length-adaptive gating.

To benchmark whether our model can effectively answer
“how-to” questions, we collect a novel QA dataset over
videos and transcripts. Our results show that the proposed
model achieves F1 score of 0.703, which leads to F1 score
gains of 14.2% relative to the best baseline model. Our ex-
periments demonstrate the impact of the proposed model.
Furthermore, comparisons with variants of the proposed
model demonstrate the impact of our Segmenter and Ranker.

In summary, we make the following contributions:

• While most existing QA models assume that the answer
is inferred on short spans, we introduce a new video-
based task to find diverse-sized spans corresponding to

non-factoid questions.
• We propose a Segmenter-Ranker (SR) model for the prob-

lem of non-factoid QA. To the best of our knowledge, our
approach is the first attempt for non-factoid QA task over
video contents.

• For such purpose, we contribute a labeled dataset of 37K
QA pairs on instructional videos for benchmarking. Our
experiments on the benchmark show that the proposed
model achieves state-of-the-art results.

2 Task Description
Inspired by extractive QA tasks, predicting a consecutive
span of words, we abstract our task as predicting a consec-
utive span of sentences, to support multi-sentence answers.
We redefine clip as a sentence unit of video, and our problem
as predicting a consecutive span clips.

In our task, given a question, the goal is to find a con-
secutive answer span, on a pair of video and transcript.
Let a given question be Q = {wQ1 , w

Q
2 , ..., w

Q
n }. Let a

given video be T , and transcript with m sentences be
S = {S1, S2, ..., Sm}. We divide the video T into m
clips, where each clip corresponds to a single sentence, i.e.,
T = {T1, T2, ..., Tm}. The k-th clip Tk contains the sen-
tence Sk = {wSk1 , ..., wSkn }, and sampled image frames
F k = {vFk1 , ..., vFkl }. Then, given a pair of video T and
question Q, the objective of our task is to estimate a con-
secutive answer span A, i.e., A = {Ti, Ti+1, ..., Tj} where
A ⊆ T . For task evaluation, the predicted answer span A is
compared with the ground-truth answer span A∗, in terms
of F1 score, precision, and recall in experiment section.

For training and evaluating this task, we collect labelled
resources of 37K QA pairs and 21K video (total 1,662
hours). From a commercial search engine, we sampled user
queries as questions, and retrieved top1 Youtube video that
have English subtitles. Through user interface, we provided
a pair of the query and video, and crowd workers were asked
to select the answer clips (i.e., sub-sequence of the video)
corresponding to the given question. The annotators can re-
turn “unanswerable” if there is no answer on the video, and
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Figure 3: Architecture of our two-stage model

we filter the unanswerable cases. Each query has an answer
span label on the video, where the average length of the an-
swers and videos are 15.3 sentences (86 sec) and 60.2 sen-
tences (285 sec), respectively. On a single video, multiple
queries can be occurred (average 1.76 in our dataset). We
divide the dataset into 29K/4k/4k as training/dev/test set re-
spectively, where the videos do not overlap in each set. We
summarize the statistics of the dataset in Table 1 and distri-
bution of video lengths in Figure 1.

We stress again that this dataset presents a new challenge
of non-factoid answers of varying length, while in exist-
ing span-based QA tasks such as SQuAD, most answers
(99.83%) is inferred in a single factoid sentence (Du, Shao,
and Cardie 2017), and in action localization task (Regneri
et al. 2013), text description consists of a short sentence (9
words on average).

Table 1: Statistics of the datasets. |V | and |A| indicate the
number of clips in the video and answer, respectively

# of # of Average Average
QA-pairs Videos |V | |A|

Training 29K 17K 60.1 15.2
Dev 4K 2K 60.4 15.4
Test 4K 2K 61.2 15.7

3 Model
Our goal is to find answer parts of varying lengths over
video, using both video and textual modality. We propose
a Segmenter-Ranker (SR) model as a two-stage approach in
Figure 3. To keep multimodal representation light-weight,
we propose the use of visual concepts obtained from ob-
ject detection as an auxiliary features. Since fast R-CNN
based object detector (Anderson et al. 2018) provides mean-
ingful features, such information has been found to be use-
ful for various multimodal tasks (Yin and Ordonez 2017;
Lei et al. 2018; Kim et al. 2019). While another feature from

ImageNet-based model (e.g., ResNet) is also available, we
do not use this for the following reason: since image features
from ResNet-50 or 101 have a large dimension (2048d),
which is computationally expensive, its adoption was pos-
sible on factoid QA with short clips (TGIF-QA (Jang et al.
2017): 3.1s, MovieFIB (Maharaj et al. 2017): 4.1s, on aver-
age). However, it may be overkill, for realistic scenario with
average length 285s in our dataset. In contrast, visual con-
cepts from object detector do not incur memory overhead,
which can be represented as 1600 categories. Using open-
source detector 1, we extract object categories c from images
in clip Tk, and append all categories in the frames to a set.
We redefine frames F k as follow: F k = {cFk1 , cFk2 , ..., cFkp },
where p is the number of objects in Fk.

3.1 Segmenter Network
The goal of Segmenter is to extract several likely candidates
as an answer span. For such goal, we train this module to
identify whether the clip is begin (or end) position of the
answer, or not. As a naive approach, one may consider rank-
ing model to score clips in a fixed-size window individu-
ally, which ignores temporal property and global context of
videos. To consider such context, we design a hierarchical
structure to first encode each clip with a given query, then
insert the encoded vectors of all clips into sequential model.

For encoding each clip with a query, we build a multi-
modal encoder to deal with textual and visual contents. For-
mally, a clip consists of a sentence and image objects, which
are denoted as two tuples: (queryQ, sentence Sk) and (query
Q, object set Fk) per each clip Tk. To encode these tuples
jointly, we extend the pre-trained BERT model (Devlin et al.
2018), shown to be effective in a wide variety of language
tasks, especially both representing words and matching a
pair of two texts.

To encode (Q, S), we append words in Q and S, with
starter symbol [CLS] and separator symbol [SEP ], and feed

1https://github.com/peteanderson80/bottom-up-attention
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Figure 4: BERT adoption for multimodal encoder

them into BERT model. BERT generates L layers of hidden
states for all BPE tokens in a input sequence. For extracting a
vector to represent (Q, Sk), we use the output in the position
of [CLS] token, which is denoted as:

XSent
k = BERTCLS(Q,Sk), k ∈ [1,m] (1)

To encode (Q, F ) with multimodality, we extend BERT,
as shown in Figure 4. First, for natural language query, we
use BERT to encode word representations in the query. Sec-
ond, for a set of object categories, we encode each category
of objects as word embedding, which is passed through a
dense layer. We use positional embedding for representing
query words, but not for a set of object. Third, for matching
between query and objects, we stack two self-attention lay-
ers (Vaswani et al. 2017), which aggregates all words in the
query and objects. During training, BERT in our Segmenter
is fine-tuned, jointly learning how to match the query with
visual objects through self-attention layers.

Figure 4 summarizes such distinction: Q and F are em-
bedded, with [CLS] and [SEP ], and inserted into BERT
model. For extracting features of (Q, Fk), we use the output
of [CLS] token. After obtaining the feature of (Q, Fk), we
combine two features from the tuples in Tk, as follows:

XObj
k = hCLS(BERT (Q), NN(Fk)), k ∈ [1,m]

X̂k = NN(concat(XObj
k , XSent

k )), k ∈ [1,m]
(2)

where hCLS indicates the output of self-attention in posi-
tions of [CLS], and NN is a single-layer neural network
using tanh function.

After encoding each clip (Q, Tk) to X̂k, we consider
the features X̂ as a sequence, by stacking a hierarchical
structure. First, we leverage two sequential models: (1) self-
attention for global context, and (2) bi-directional LSTM for
temporal context. Self-attention of transformer (Vaswani et
al. 2017) can capture global dependencies, by attending to
all positions. As shown in Figure 3, the features of all clips
are aggregated by self-attention, and then are passed through
bi-LSTM layers, as the following:

Y = Multihead-Attention(X̂)

Ŷk = concat(X̂k, Yk), k ∈ [1,m]

M beg
k =

←−−−−→
LSTM1(Ŷk), k ∈ [1,m]

Mend
k =

←−−−−→
LSTM2([Ŷk ; M beg

k ]), k ∈ [1,m]

(3)

Second, for prediction, we represent the answer as a se-
quence of indexes indicating the positions of the begin and
end clip in the answer, and train two LSTM networks to gen-
erate the probabilities of begin and end at each position. The
mathematical formulation is shown below:

abegk = wb · σ(W1M
beg
k + b1), k ∈ [1,m]

aendk = we · σ(W2M
end
k + b2), k ∈ [1,m]

pbeg = softmax(abeg)

pend = softmax(aend)

(4)

where W1,W2 ∈ Rd×d, and wb, we, b1, b2 ∈ Rd are train-
able parameters, and σ is tanh function. The pbeg and pend
are the normalized probabilities to present begin and end
clips. During training, we use cross-entropy loss with labels
where the ground-truth in begin and end position is equal to
1, otherwise 0. At inference time, we extract top N spans,
where the top N values of pbegi × pendj (i ≤ j) are selected.

Meanwhile, top 1 span among the candidates could be
viewed as a final answer, which means that Segmenter has
a capability to predict answer spans. To ensure precision,
we design a multigranular Ranker to re-rank the candidates,
adapting to the answer of varying length.

3.2 Ranker Network
After span candidates are extracted from Segmenter, the goal
of Ranker is to re-rank the spans, so as to retrieve a fi-
nal answer corresponding to a given query. The two main
model families for ranking are: First, representation-based
approach (Wang and Nyberg 2015; Yin et al. 2016) that
aggregates all context into a single vector has shown ef-
fectiveness in sentence-level prediction tasks, such as an-
swer selection, classification, and paraphrase detection, but
less in tasks to deal with long text (Guo et al. 2016;
Cohen, Yang, and Croft 2018). Second, for matching long
texts, other approaches (Guo et al. 2016; Hui et al. 2017;
2018; Ruckle, Moosavi, and Gurevych 2019) leveraging lo-
cal interactions to capture relevance between a query and
long texts, has been more successful.

However, as shown in Figure 1(a), answer spans for non-
factoid setting have diverse length, ranging from a single
clip to 30 clips. Therefore, the capability of adapting to
short and long answers is crucial for non-factoid QA. To
be robust on both long and short answers, we aim to selec-
tively leverage the above two approaches (representation-
and interaction-based approaches).

Specifically, let top N candidate spans from Segmenter
be Ci where i = 1, ..., N , and Ci ⊆ T . Suppose that the
span Ci has a word sequence Si and object set Fi, where
Si = {wSi1 , w

Si
2 , ..., w

Si
n } and Fi = {cFi1 , c

Fi
2 , ..., c

Fi
n }.

Representation-based feature: First, for representation
feature, we use BERT encoder, which is the same structure
with Segmenter. While Segmenter takes all clips as input,
Ranker treats a span as a single clip, without a hierarchical
structure. The representation feature Vrep is computed by
using Eq. (1) and (2). We argue that this encoder supports
matching between a query and short answer.



Interaction-based feature: Second, to encode interaction
feature, we use CNN-based approach, inspired by (Hui et
al. 2017; 2018). To encode (Q, S), we calculate the cosine
similarity matrix M lQ×lS to capture matching signals be-
tween words in Q and S. From the matrix, we extract lo-
cal interactions between n-by-n grams, through CNN layers.
For such n-gram matching, we use multiple (lf ) CNN layers
with (2×2, 3×3, 4×4) filters. After passing through CNN,
we extract top nt strongest signals, by max-pooling over se-
quence S. The above processes are calculated as follows:

M(i, j) = cos(wQi , w
S
j )

PlQ×lS×lf = Conv(M lQ×lS )

P̂lQ×nt×lf = max(PlQ×lS×lf )

(5)

whereM(i, j) indicates (i, j)-th element in matrix M lQ×lS .
To make (Q, S) as a single vector, we average the lQ matri-
ces in terms of each query term, and the averaged matrix
(nt × lf ) is concatenated into a (nt · lf )-dimensional vector.

For encoding (Q, F ), we use the same structure with CNN
layers and max-pooling. But, since visual objects are not se-
quential, we treat F as bag-of-words, by changing the filter
size into (2 × 1, 3 × 1, 4 × 1). After concatenating the out-
puts of (Q,S) and (Q,F ), the final vector of this interaction
feature is passed through a dense layer, as follows:

H ′ = concat(CNN(Q,S), CNN(Q,F ))

Vint = NN(H ′)
(6)

where NN indicates a single-layer neural network using
tanh function.

Our combination approach: To combine the above two
complementary advantages, we propose a length-adaptive
gate g to control their importance as span lengths. We ex-
pect that representation feature is effective for short se-
quence, while interaction feature is effective for long se-
quence, which will be validated empirically in experiment
section as well. For such controller, it needs a monotonic
function to give a correlation between the gate’s weight and
span length, and have trainable parameters for fitting data.
As such function, we use Weibull Distribution (Hazewinkel
2001) to combine Vrep and Vint, and the final score of span
Ci is combined as follows:

g(x) = 1− e(x/α)
β

Vfinal = (1− g(si)) · Vrep + g(si) · Vint

S(Q,Ci) = σ(W5Vfinal + b5)

(7)

where α, β, b5 ∈ R1, W5 ∈ R1×d are trainable parameters,
and si indicates the number of clips in spanCi. Since g(x) is
a monotonic function, the gate g weighs on interaction fea-
ture as increasing the number of clips. Through a dense layer
with sigmoid function, we obtain a score S(Q,Ci) from the
feature Vfinal. During training, we consider ground-truth
span as positive, and randomly select spans as negative.

L(Q,C; Θ) =
∑
C+∈A

log
exp(S(Q,C+))∑n
k=1 exp(S(Q,C−k )

(8)

where A is a set of ground-truth spans, C+ and C− are pos-
itive and negative spans, respectively. At inference time, we
insert span candidates obtained from Segmenter, and select
span with highest score as a final answer.

4 Experiment
In this section, we formulate our research questions in Sec-
tion 4.1 to guide our experiments. Then we describe our im-
plementation and evaluation results in Section 4.2 and 4.3,
respectively.

4.1 Research Questions
To evaluate the effectiveness of our Segmenter-Ranker
method, we address the following research questions:

• RQ1: How effective is our proposed method for non-
factoid QA on videos? Does it outperform state-of-the-art
baselines?

• RQ2: What is the impact of multimodal encoder?

• RQ3: Is our model robust to answers with varying
lengths?

4.2 Implementation
We use a base version of BERT (Devlin et al. 2018) with
12 layers as our encoder, following its default setting. We
train our model on BERT until 3 epochs, and use the Adam
optimizer with a learning rate of 0.00005. In Segmenter, we
extract N = 9 span candidates, from the output probabili-
ties. In Ranker, training data has 1:9 positive and negative
ratio, then this module ranks top 9 candidates at inference
time. For CNN layer, the number lf of layers is 30, and top
nt = 7 elements in max-pooling are extracted, which are op-
timized on dev set. For object features, we utilize a bottom-
up-attention model (Anderson et al. 2018), which can detect
objects in 1600 categories. For detecting image objects, we
sample frames as 1 fps in videos.

4.3 Evaluation
For task evaluation, we treat the predicted span and ground-
truth as bags of clips, and compute three metrics: (1) Preci-
sion, (2) Recall, (3) F1 score. For overall scores, we average
each score over all of the instances. We compare our pro-
posed model with the following baselines:

• Base-I: Based on only text, BERT for machine reading
comprehension (MRC) task (Devlin et al. 2018) can be
applied as a baseline. As MRC models are commonly de-
signed to predict word-level span, we change clip-level
span to word-level for training, then convert the word-
level prediction back into clip-level span at test time.

• Base-II: Another text-based model is QANet (Yu et al.
2018). When considering only text, the commonality of
our task and QANet is to require the ability of fusing ques-
tion and passage in encoder. To compare such ability, we
replace BERT of our Segmenter with the encoder in the
QANet. The encoder of QANet consists of convolutional,
self-attention, and query-context attention layers.



Table 2: The comparison of the proposed models on our test set. Compared to version w/o object features, our models (F1
score) outperform with statistical significance (* indicates p < 0.05).

Model Description Metric
Precision Recall F1 score

Base-I MRC-BERT (Devlin et al. 2018) 50.63 46.14 48.28
Base-II (Lei et al. 2018) + our decoder 53.43 64.01 58.24
Base-III (Yu et al. 2018) + our decoder 57.03 66.89 61.57

R-I Ranker (split-then-rank) 55.24 52.76 53.97
S-I Segmenter (w/o self-att, LSTM) 50.54 52.11 51.31
S-II Segmenter (w/o self-att) 63.02 65.17 64.08
S-III Segmenter (full w/o object feature) 64.01 64.45 64.23
S-IV Segmenter (full) 64.29 67.21∗ 65.71∗
SR-I Segmenter + Ranker (representation-only) 64.76 70.65 67.57
SR-II Segmenter + Ranker (interaction-only) 65.93 71.44 68.57
SR-III Segmenter + Ranker (concatenation) 65.12 72.78 68.74
SR-IV Segmenter + Ranker (full w/o object feature) 65.95 71.33 68.53
SR-V Segmenter + Ranker (full) 66.37 74.75∗ 70.31∗

• Base-III: Similarly to our task, a baseline in (Lei et al.
2018) requires to fuse question and video (transcript and
visual concepts), using object detection. Since this task is
proposed for multiple choice questions, we replace BERT
of our Segmenter with their multimodal encoder.

• Our models: Our proposed model consists of Segmenter
and Ranker, which is implemented as follows. First,
among candidates split by a fixed window (we used the
average of answer lengths as the window size (=15)),
Ranker selects the most relevant candidate as an answer,
which denoted as R. Second, we consider Top 1 candi-
date from Segmenter as an answer, which denoted as S.
Third, Ranker selects the most likely answer among Top
N candidates from Segmenter, denoted as SR. For an ab-
lation study, we remove each individual component in
Segmenter and Ranker.

Table 2 shows the results of different models on test set.
As we can see, our full model (SR-V) obtains the best results
by achieving F1 score of 70.31, outperforming all baselines.
A two-stage method using both Segmenter and Ranker con-
tributes to higher accuracy, when compared to the version
using only Segmenter, which leads to 4.6 F1 score gains.

For an ablation study, we remove each component in Seg-
menter and Ranker. In Segmenter, full S-IV model using
self-attention and LSTM outperforms S-I and S-II without
hierarchical modeling. This supports the effectiveness of hi-
erarchical modeling considering temporal and global con-
text. To validate the effectiveness of our multimodality, we
compare S-III vs S-IV and SR-IV vs SR-V, removing object
features in our encoder. In the comparison, the encoder using
object features improves performance, especially leading to
2.76 and 3.42 recall gains, on S and SR respectively.

In SR (combining Segmenter and Ranker), we perform an
ablation study for representation- and interaction-based fea-
tures. When comparing between SR-I and SR-II, interaction-
based model outperforms representation-based model on all
metrics. Meanwhile, SR-III concatenating two features im-
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Figure 5: F1 score of SR models over answer lengths. In this
figure, the y- and x-axis indicate F1 score and the lengths of
the ground-truth span, respectively

proves each model (SR-I,II) slightly. By combining their
strengths using our length-adaptive gate (SR-IV), we im-
prove F1 score, compared with SR-I,II,III.

In order to validate our robustness over the answers
of varying length, we split test set by answer lengths
(per 5 clips), as shown in Figure 5. In SR-I model
(representation-based), F1 score tends to decrease as the
answer length increases. In contrast, we observe that SR-
II model (interaction-based) performs worse, especially for
shorter answers. Our SR-V model shows the robustness of
maintaining F1 score over 65, in all lengths. This demon-
strates that our length-adaptive gate contributes to robust-
ness, by controlling the weights of the two features as
lengths. That is, the gate on longer answers promotes the
usage of interaction feature, while that on shorter answers
weighs on representation feature. By leveraging these two
features adaptively to varying lengths, SR-V obtains the best
scores over all lengths except over 0-5 clips.

4.4 Qualitative Results
Figure 6 shows the results of the answer predicted by our
model, given the questions about how to make Korean beef



S : I'm switching my focus to pizza, I'm still learning. 
F : kitchen, hand, woman, shelf, table, apron

S : I'm going to make a pizza cake by baking vanilla cake in a pizza pan.
F : bottle, pizza, boxes, table, toppings, cake, olive

ground-truth span

S : It starts out two founds of flank steak now.
F : hand, table, finger, meat, knife 

S : when it's done, serve it over cooked rice and garnish with green onions
F : hand, plate, meat, rice, onion

Question: How to make a pizza cake

Question: How to cook Korean beef bulgogi

https://www.youtube.com/watch?v=YsTXOJYeTVw

S : oh time to set the table, I got the pizza here for you
F : pizza, boxes, table, toppings, cake, woman, kitchen

model prediction

model prediction

ground-truth span

𝑆𝑆𝑆𝑆-Ⅳ
model prediction𝑆𝑆𝑆𝑆-Ⅴ

𝑆𝑆𝑆𝑆-Ⅴ

(a) Example 1 describes how to cook Korean beef.

S : I'm switching my focus to pizza, I'm still learning. 
F : kitchen, hand, woman, shelf, table, apron

S : I'm going to make a pizza cake by baking vanilla cake in a pizza pan.
F : bottle, pizza, boxes, table, toppings, cake, olive

ground-truth span

S : It starts out two founds of flank steak now.
F : hand, table, finger, meat, knife 

S : when it's done, serve it over cooked rice and garnish with green onions
F : hand, plate, meat, rice, onion

Question: How to make a pizza cake

Question: How to cook Korean beef bulgogi

https://www.youtube.com/watch?v=YsTXOJYeTVw

S : oh time to set the table, I got the pizza here for you
F : pizza, boxes, table, toppings, cake, woman, kitchen

model prediction

model prediction

ground-truth span

𝑆𝑆𝑆𝑆-Ⅳ
model prediction𝑆𝑆𝑆𝑆-Ⅴ

𝑆𝑆𝑆𝑆-Ⅴ

(b) Example 2 describes how to make a pizza cake

Figure 6: The examples of the results on our full model (SR-IV and V). The red boxes indicate the begin and end of ground-truth
answer, while the yellow box is wrong prediction by model.

and a pizza cake. In Figure 6(a), our full model (SR-V) suc-
cessfully predicts the correct answer span, where the red
boxes indicate the begin and end clips of ground-truth. In
Figure 6(b), SR-IV (text-only) selects the first clip (yellow
box) as the begin point, which is a wrong answer. Mean-
while, SR-V considering multimodality predicts the correct
answer (the third clip) in the red box. In the first clip, the nar-
ration is related about a pizza, not the given question (pizza
cake). Human performing for a pizza cake actually starts at
the third clip, along with visual contents of the food. In the
clip, the visual objects can be a hint, sharing some words
with that in the question. In this case, our full model (SR-V)
successfully segmented the begin clip of the answer, while
the text-only model failed.

5 Related Work

5.1 Instructional Video Datasets

Existing datasets on instructional videos include
How2 (Sanabria et al. 2018) and YouCook2 (Zhou,
Xu, and Corso 2018). How2 dataset collects instructional
videos totalling 2,000 hours. While How2 set contains a
large-scale collection of videos with English/Portuguese
subtitles, this is not designed for QA task, such that no
answer label is provided. YouCook2 dataset contains 2000
cooking videos from YouTube, with human annotations
segmenting cooking procedures, each of which is a single
sentence. Our work is closely related, by segmenting videos
into answer spans, but their work is limited to the span
corresponding to a single sentence.

5.2 Text-based Extractive QA
Examples of extractive QA are SQuAD (Rajpurkar et al.
2016), NewsQA (Trischler et al. 2016), and TriviaQA (Joshi
et al. 2017), based on web documents. In these tasks, given
a pair of passage P and question Q, the objective is to es-
timate an answer span A, where A ⊆ P . The majority of
extractive QA models (Seo et al. 2016; Wang et al. 2017;
Yu et al. 2018) predict the probability of each position in the
passage being the begin or end of an answer span. Mean-
while, extractive QA model based on video transcript has
been proposed (Gupta, Mehrotra, and Gupta 2018). They
similarly tackle the challenge of unsegmented text, by divid-
ing transcripts into meaningful chunks first, and extracting
answer spans for factoid questions. However, such approach
also targets on short answers, not with varying length. Be-
yond factoid questions, retrieving a paragraph of answering
why- or how-questions has been studied (Ruckle, Moosavi,
and Gurevych 2019; Han et al. 2019; Tan et al. 2015). While
these approaches can deal with longer answers, they assume
that pre-segmented paragraphs are available, which is not
available in our problem setting.

6 Conclusion
In this paper, we propose a new approach for video-based
non-factoid QA, with additional challenges of multimodal
segmentation and multigranular matching. In the proposed
model, Segmenter identifies candidate spans, and Ranker
computes a multigranular matching score between question-
answer pair of diverse lengths. Our experimental results
show that we outperform state-of-the-art baselines.



References
Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.;
Gould, S.; and Zhang, L. 2018. Bottom-up and top-down at-
tention for image captioning and visual question answering.
In CVPR, volume 3.
Cheng, Z.; Li, X.; Shen, J.; and Hauptmann, A. G. 2016.
Which information sources are more effective and reliable
in video search. In SIGIR, 1069–1072. ACM.
Cohen, D.; Yang, L.; and Croft, W. B. 2018. Wikipassageqa:
A benchmark collection for research on non-factoid answer
passage retrieval. In SIGIR. ACM.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Du, X.; Shao, J.; and Cardie, C. 2017. Learning to ask: Neu-
ral question generation for reading comprehension. arXiv
preprint arXiv:1705.00106.
Gao, J.; Sun, C.; Yang, Z.; and Nevatia, R. 2017. Tall: Tem-
poral activity localization via language query. arXiv preprint
arXiv:1705.02101.
Guo, J.; Fan, Y.; Ai, Q.; and Croft, W. B. 2016. A deep
relevance matching model for ad-hoc retrieval. In CIKM.
Guo, J.; Fan, Y.; Pang, L.; Yang, L.; Ai, Q.; Zamani, H.;
Wu, C.; Croft, W. B.; and Cheng, X. 2019. A deep look
into neural ranking models for information retrieval. arXiv
preprint arXiv:1903.06902.
Gupta, A.; Mehrotra, R.; and Gupta, M. 2018. Neural atten-
tion reader for video comprehension.
Han, H.; Choi, S.; Park, H.; and Hwang, S.-w. 2019. Mi-
cron: Multigranular interaction for contextualizing represen-
tation in non-factoid question answering. In Proceedings of
the 2019 Conference on Empirical Methods in Natural Lan-
guage Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-IJCNLP),
5892–5897.
Hazewinkel, M. 2001. Weibull distribution. In Encyclopedia
of Mathematics. Springer New York.
Hui, K.; Yates, A.; Berberich, K.; and de Melo, G. 2017.
Pacrr: A position-aware neural ir model for relevance match-
ing. arXiv preprint arXiv:1704.03940.
Hui, K.; Yates, A.; Berberich, K.; and de Melo, G. 2018. Co-
pacrr: A context-aware neural ir model for ad-hoc retrieval.
In WSDM, 279–287. ACM.
Jang, Y.; Song, Y.; Yu, Y.; Kim, Y.; and Kim, G. 2017. Tgif-
qa: Toward spatio-temporal reasoning in visual question an-
swering. In CVPR, 2758–2766.
Joshi, M.; Choi, E.; Weld, D. S.; and Zettlemoyer, L.
2017. Triviaqa: A large scale distantly supervised chal-
lenge dataset for reading comprehension. arXiv preprint
arXiv:1705.03551.
Kim, J.; Ma, M.; Kim, K.; Kim, S.; and Yoo, C. D.
2019. Gaining extra supervision via multi-task learning
for multi-modal video question answering. arXiv preprint
arXiv:1905.13540.

Lei, J.; Yu, L.; Bansal, M.; and Berg, T. L. 2018. Tvqa:
Localized, compositional video question answering. arXiv
preprint arXiv:1809.01696.
Li, G.; Ming, Z.; Li, H.; and Chua, T.-S. 2009. Video refer-
ence: question answering on youtube. In Proceedings of the
17th ACM international conference on Multimedia.
Liu, M.; Wang, X.; Nie, L.; He, X.; Chen, B.; and Chua,
T.-S. 2018. Attentive moment retrieval in videos. In SIGIR.
Maharaj, T.; Ballas, N.; Rohrbach, A.; Courville, A.; and
Pal, C. 2017. A dataset and exploration of models for
understanding video data through fill-in-the-blank question-
answering. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 6884–6893.
Nie, L.; Wang, M.; Zha, Z.; Li, G.; and Chua, T.-S. 2011.
Multimedia answering: enriching text qa with media infor-
mation. In SIGIR, 695–704. ACM.
Rajpurkar, P.; Zhang, J.; Lopyrev, K.; and Liang, P. 2016.
Squad: 100,000+ questions for machine comprehension of
text. arXiv preprint arXiv:1606.05250.
Regneri, M.; Rohrbach, M.; Wetzel, D.; Thater, S.; Schiele,
B.; and Pinkal, M. 2013. Grounding action descriptions in
videos. TACL 1:25–36.
Ruckle, A.; Moosavi, N.; and Gurevych, I. 2019. Coala: A
neural coverage-based approach for long answer selection
with small data. AAAI.
Sanabria, R.; Caglayan, O.; Palaskar, S.; Elliott, D.; Bar-
rault, L.; Specia, L.; and Metze, F. 2018. How2: a large-
scale dataset for multimodal language understanding. arXiv
preprint arXiv:1811.00347.
Seo, M.; Kembhavi, A.; Farhadi, A.; and Hajishirzi, H.
2016. Bidirectional attention flow for machine comprehen-
sion. arXiv preprint arXiv:1611.01603.
Tan, M.; Santos, C. d.; Xiang, B.; and Zhou, B. 2015. Lstm-
based deep learning models for non-factoid answer selec-
tion. arXiv preprint arXiv:1511.04108.
Tapaswi, M.; Zhu, Y.; Stiefelhagen, R.; Torralba, A.; Urta-
sun, R.; and Fidler, S. 2016. Movieqa: Understanding stories
in movies through question-answering. In CVPR.
Trischler, A.; Wang, T.; Yuan, X.; Harris, J.; Sordoni, A.;
Bachman, P.; and Suleman, K. 2016. Newsqa: A machine
comprehension dataset. arXiv preprint arXiv:1611.09830.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. In NeurIPS, 5998–6008.
Wang, D., and Nyberg, E. 2015. A long short-term memory
model for answer sentence selection in question answering.
In ACL (Volume 2: Short Papers), volume 2, 707–712.
Wang, W.; Yang, N.; Wei, F.; Chang, B.; and Zhou, M. 2017.
Gated self-matching networks for reading comprehension
and question answering. In ACL, volume 1, 189–198.
Yin, X., and Ordonez, V. 2017. Obj2text: Generating visu-
ally descriptive language from object layouts. arXiv preprint
arXiv:1707.07102.
Yin, W.; Schütze, H.; Xiang, B.; and Zhou, B. 2016. Abcnn:



Attention-based convolutional neural network for modeling
sentence pairs. TACL 4:259–272.
Yin, L. 2006. A two-stage approach to retrieving answers for
how-to questions. In EACL : Student Research Workshop.
Yu, A. W.; Dohan, D.; Luong, M.-T.; Zhao, R.; Chen, K.;
Norouzi, M.; and Le, Q. V. 2018. Qanet: Combining local
convolution with global self-attention for reading compre-
hension. arXiv preprint arXiv:1804.09541.
Zhou, L.; Xu, C.; and Corso, J. J. 2018. Towards automatic
learning of procedures from web instructional videos. In
Thirty-Second AAAI Conference on Artificial Intelligence.


