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Abstract
Functionality is a fundamental attribute of an object which in-
dicates the capability to be used to perform specific actions. It
is critical to empower robots the functionality knowledge in
discovering appropriate objects for a task e.g. cut cake using
knife. Existing research works have focused on understanding
object functionality through human-object-interaction from
extensively annotated image or video data and are hard to
scale up. In this paper, we (1) mine object-functionality
knowledge through pattern-based and model-based methods
from text, (2) introduce a novel task on physical object-
functionality prediction, which consumes an image and an
action query to predict whether the object in the image can
perform the action, and (3) propose a method to leverage the
mined functionality knowledge for the new task. Our experi-
mental results show the effectiveness of our methods.

1 Introduction
Functionality indicates the capability of an object to be used
to perform specific actions. According to the study of psy-
chologist (Gibson 2014; Oakes and Madole 2008), func-
tionality is a fundamental attribute for an object to be per-
ceived by human, which is as important as appearance for
object recognition. Learning object functionality is signif-
icantly important for robots to interact with environment,
which has been widely studied in robotic community.

Query: Can cut cake?

Figure 1: Object-functionality prediction task. Given the
query <cut, cake>, whether the object in the image can be
used as tool to cut cake. The knife and spoon should output
yes, and others should output no.

With the recent advances in NLP tasks, including question
answering(Petrochuk and Zettlemoyer 2018) and dialogue
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(Serban et al. 2016; Young et al. 2018), chat with robots
has achieved significant progress. Besides, in robotic com-
munity, interacting with robot to complete tasks is a long-
standing research problem, which required both language
understanding and physical grounding. Generally, human
would like to give orders like cut cake without specifying
the tool e.g. cut the cake using knife. The robot should be
able to find a tool autonomously, which can be potentially
used to cut cake.

According to our study, WikiHow1 contains sentences
of guiding human to perform physical actions. Within
7,800,973 sentences we have collected, around 4% sen-
tences mention the actual tool explicitly. After the inves-
tigation on 20 commonly used actions which require tool
to perform, about 6% sentences explicitly mention the tool.
Human regards the object functionality as commonsense
knowledge and would like to not specify the tool. Without
explicitly mentioned, it is critical to empower robots the
functionality knowledge in discovering appropriate objects
for a task. We focus on two research problems:

1. What functionalities/actions an object has?
2. Whether the object can perform the action on another ob-

ject?

Existing knowledge graph ConceptNet(Speer and Havasi
2012) has UsedFor relation, which were collected in a
crowdsourcing way and far from satisfying application
demands due to low coverage. Previous research works
have mainly focused on understanding object functionality
through human-object-interaction from extensive annotated
image or video data and are hard to scale up. According to
our study on Visual Genome(Krishna et al. 2017), which is
an extensive labeled scene graph of each image, most rela-
tions are spatial (e.g. on, near, etc.) relations and only a few
are physical (e.g. wear, hold, etc.) relations.

In this paper, we first mine the object-functionality knowl-
edge through pattern-based and model-based methods from
large amount of text data, which improve the coverage to
a great extent. The extracted object-functionality are repre-
sented as knowledge tuples <head, action, tail>, which in-
dicates the head object performs an action on the tail object.

1https://www.wikihow.com/Main-Page



In real applications, a robot seeks visible objects that can
be used to complete the task based on appearance. Moti-
vated by this, we introduce a new task and dataset on phys-
ical object-functionality prediction, which consumes an ob-
ject image and an action query <action, object> to predict
whether the object in the image can perform the action. Fig-
ure 1 gives a showcase of the task. As an example, we can
use knife or spoon to cut the cake but not scissors, hammer or
rolling pin. To resolve this task, we propose a novel model
to predict the object-functionality through both visual ap-
pearance and the extracted functionality knowledge. More
specifically, on one hand, we use a CNN based model to
perform object and functionality classification. On the other
hand, we directly use the predicted object and the action
query to construct a tuple <head, action, tail> and employ
both PRA (Path ranking algorithm)(Lao, Mitchell, and Co-
hen 2011) and Dismult(Yang et al. 2015) module for infer-
ence. Then we finalize the score through a linear combina-
tion.

We conduct experiments on evaluating the quality and
coverage of the mined object-functionality knowledge. Ex-
perimental results of applying the knowledge for object-
functionality prediction task show the effectiveness of our
model. To sum up, the contributions of this paper are:

1. We propose to mine functionality from large scale text
data.

2. We introduce a new task for object-functionality predic-
tion and constructing a new dataset.

3. We design a model through visual-based recognition and
knowledge inference modules to resolve the task.

2 Related Works
Object affordance and functionality have been studied
for years and have attracted more attention in computer vi-
sion and robotics community. According to Gibson(Gibson
2014), Object affordance reveals the possible actions the
object can perform or be performed on them when inter-
acting with environment. In this work, we focus on object
functionality, which is the action that object can perform.
Yao(Yao, Ma, and Fei-Fei 2013) discovered object function-
ality through human interaction with the object. Zhu(Zhu,
Fathi, and Fei-Fei 2014) proposed to infer object affor-
dance by reasoning in knowledge base which consists of
visual, physical, categorical as well as HOI (human-object-
interaction) concepts. Zhu(Zhu, Zhao, and Chun Zhu 2015)
introduced a method to understand functionality by imag-
ing actions on physical concepts. However, it is hard to col-
lect large scale HOI dataset with annotation. Azuma(Azuma,
Takiguchi, and Ariki ) shown that functionality can be ef-
fectively recognized from appearance according to attributes
like shape or material. Different from previous work, we first
mine the functionality knowledge and predict the function-
ality from both object appearance and knowledge,

Knowledge extraction aims to mine propositions in the
form of <subject, verb, object > from large scale cor-
pus. NELL (Never Ending Language Learner)(Mitchell et

al. 2018) extracted structured knowledge by bootstrapping
techniques. Recently, neural based open information extrac-
tion(Stanovsky et al. 2018) has been widely used to mine
knowledge. In this paper, we adopt RnnOIE(Stanovsky et
al. 2018) which is a Bi-LSTM model for sequence tagging.
Object functionality is rarely declared as the form of subject-
verb-object in the corpus and we apply several post process-
ing methods for further extraction.

Commonsense knowledge ConceptNet(Speer and Havasi
2012) is the most widely used commonsense knowledge
graph and is collected in a crowdsourcing way. We-
bChild(Tandon et al. 2014) extracted commonsense knowl-
edge from text automatically. Recent advances attempted to
extract knowledge through visual images. NEIL(Chen, Shri-
vastava, and Gupta 2013) is a pipeline to extract knowl-
edge from images endlessly. Xin(Lin and Parikh 2015;
Vedantam et al. 2015) has proposed to extract commonsense
knowledge by abstract images. Yatskar(Yatskar, Ordonez,
and Farhadi 2016) extract visual commonsense knowledge
mainly on spatial relations such as on, above, besides, touch,
etc. However, these knowledge graphs neglect physical ac-
tions. Chao(Chao et al. 2015) has proposed to mine seman-
tic affordance through text mining, visual mining and col-
laborative filtering methods. We not only mine functional-
ity, but also incorporate the knowledge for further object-
functionality prediction task.

Incorporating knowledge Tremendous research
works aim to incorporate knowledge for AI agents e.g.
KBQA(Petrochuk and Zettlemoyer 2018), Dialogue(Young
et al. 2018), VQA(Lu et al. 2018). Knowledge embedding
are widely used techniques for link prediction and incor-
porating knowledge in many tasks. which embed discrete
tokens to vector representation, such as TransE(Bordes
et al. 2013), Dismult(Yang et al. 2015), URGE(Chen et
al. 2019). In this work, we adopt Dismult to predict the
relationship between the head and tail entities. Different
from knowledge embedding, we also predict object and its
functionality through PRA(Lao, Mitchell, and Cohen 2011)
with regard to: (1) PRA(Lao, Mitchell, and Cohen 2011)
uses the explicit pathes to predict relations (2) Existing
knowledge embedding models aim to encode encyclopedic
knowledge instead of commonsense knowledge. Experi-
mental results have shown that combining Dismult and PRA
can effectively predict object functionality.

3 Object-Functionality Prediction Task
In this section, we first formulate the object-functionality
prediction task, then discuss the framework, and finally in-
troduce the dataset.

Problem Formalization
Given an image of object I , and an action query Q as <ac-
tion, object>, predict whether the object I can be used to
complete the task Q. This is formalized as a classification
problem.



Framework
We discuss the framework to perform the task. Firstly, we
extract the object-functionality knowledge from various text
dataset; Secondly, we consolidate these candidates into one
knowledge graph; Finally, we propose a model to predict
the plausibility score through object and functionality clas-
sification module followed by an inference module. Figure
2 shows the overview of the framework.
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Figure 2: Framework

Data Collection
We collect a dataset for the object-functionality predic-
tion task. This dataset contains <head (image), action,
tail> with a label 1(yes) or 0(no). We start by selecting
actions which require tools to complete. Then we label (1)
the <head, action> pairs to judge whether the head object
can execute the action; (2) the <head, action, tail> tuples
to decide whether the head object can perform the action on
the tail. Finally, we crawl and clean the images of objects.

Actions Following (Chao et al. 2015), We first extract the
100 most frequently used and physically visible actions from
the dataset in (Chao et al. 2015). Chao(Chao et al. 2015)
labeled the visualness score of verbs, and we use their label
and select the visible verbs (score >3.6). We also removed
several vague actions like have, make, be and actions which
do not require a tool to perform such as think, run. At last,
we select 20 actions listed in Table 1.

Table 1: Action List
break cut heat roll
build decorate hit shoot
clean draw kill tie

contain drink paint wash
cook eat repair write

Head-Action pairs We select top 70 objects which are fre-
quently used to perform the 20 actions from ConceptNet.
Then we conduct Cartesian product on all 70 head objects
and 20 actions into 1400 <head, action > pairs as candi-
dates. After that, we ask two labelers to annotate the ques-
tion:

Q: “whether the object can perform action ?”
Two labelers have the consistent labels for over 80% pairs

and we asked another labeler to make a final judgment for

the inconsistent labels. In total, we get 330 positive pairs and
1,070 negative pairs.

Action-Tail affordance pairs (Chao et al. 2015) has stud-
ied the affordance whether human can perform the actions
on the objects e.g. cut is not affordable for water but is af-
fordable for cake. We sample 200 action-tail pairs from all
valid affordance dataset to avoid meaningless tuples.

Head-Action-Tail tuples We merged the 330 <head, ac-
tion> and 200 <action, tail> reasonable pairs by a inner
join on action, and get 3,900 tuples. Then we ask labelers to
annotate:

Q: “whether the head object can perform action on the
tail object”.

Similarly, two labelers are asked to label and one for con-
firmation. Altogether, we get 2,232 positive tuples. Table 2
shows some examples.

Table 2: <head, action > pair and <head, action, tail > tu-
ple examples

Head Action Tail Label
toothbrush wash - 1
knife kill - 1
ax drink - 0
bag cut - 0
toothbrush wash face 0
knife clean fish 1
ax cut tree 1
bag contain water 0

Figure 3 depicts the positive ratio for each action. From
the result, we can see 1) all tuples with action hit are positive,
which shows that this functionality is general and can per-
form on all objects in our dataset. 2) While for actions like
cook and roll, there are more negative tuples than positive,
which shows that the object can only perform the function-
ality to a small group of objects. Take clean as an example,
mop can be used to clean floor but not food.

Figure 3: Positive ratio for each action

To collect the images, we crawl the top 200 images for
each object from a commercial search engine. Then we clean



Table 3: List of patterns
Type Pattern

#1
Token [head used for doing tail]
Dependence tree [nsubj(pass) root prep comp, dobj]
POS tagging [NN VB IN VB NN]

#2
Token [do tail using head]
Dependence tree [root dobj comp dobj]
POS tagging [VB NN VB NN]

#3
Token [do tail with head]
Dependence tree [root dobj prep pobj]
POS tagging [VB NN IN NN]

and collect 11,666 images in all. The overall dataset con-
tains:

1. Head-Action pairs: 330 over 1,400 pairs are positive,
which are used for evaluating quality of mined knowledge
and functionality classification.

2. Head-Action-Tail tuples: 3,900 tuples to evaluate infer-
ence module.

3. Head(image)-Action-Tail tuples: 678,900 tuples in all
used to evaluate end-to-end object-functionality predic-
tion task.

4 Extract Object-Functionality Knowledge
In this section, we study the first research problem: What
functionality/actions an object has? We employ both pattern-
based and model-based knowledge mining methods to mine
<head, action, tail> tuples and then evaluate the consoli-
dated tuples.

UsedFor tuples in ConceptNet
ConceptNet(Speer and Havasi 2012) is a commonsense
knowledge graph and has UsedFor relation indicating ob-
ject functionality. We first select this relation, and extract the
verb and object from the tail. For example, the tuple <knife,
UsedFor, cutting cakes> is refined to <knife, cut, cake>.

Pattern-based method
We adopt a pattern-based method on Google Syntactic N-
gram dataset (Lin et al. 2012), which parsed the dependency
syntactic from large scale corpus. We directly apply patterns
listed in Table 3 to extract tuples.

Model-based method
WikiHow is “the world’s most popular how-to website il-
lustrating instructions for everything”, which contains sen-
tences stating how to perform physical actions. In this paper,
we collect 7,800,973 sentences to extract tuples.

We adopt RnnOIE(Stanovsky et al. 2018), a bi-LSTM se-
quence tagging model, to extract tuples. This model itera-
tively lends itself to BIO (Beginning-Inside-Outside) tag-
ging to capture a wide range of propositions. The label types
are predicate(V), argument(ARG) or others(O) with BIO
scheme. Given the sentence, sequentially predict each token

Table 4: A showcase of model based example
Cut the cake using a sharp knife and put one piece into a place
RnnOIE:
cut: [V: Cut] [ARG1: the cake using a sharp
knife and put one piece into a place]
using: Cut [ARG0: the cake] [V: using] [ARG1: a
sharp knife] and put one piece into a place
put: [ARG0: Cut] [ARG0: the cake] using a sharp knife
and [V: put] [ARG1: one piece] [ARG2: into a place]
Tuples: <, cut, the cake using...>, <the cake, using, a
sharp knife>, <cut, put, one piece>, <the cake, put, one piece>
Our: <knife, cut, cake>
New label: CutV theo cakeARG1 usingo ao sharpo
knifeARG0 ando puto oneo pieceo intoo ao placeo.

with one of the labels. RnnOIE generates multiple extrac-
tions from a single sentence through certain syntactic con-
struction.

Table 4 lists one showcase of creating training data from
existing RnnOIE results. Although the existing model can
extract many tuples, none of them are object-functionality
tuples. We apply several post processing rules to further ex-
tract the valid tuples. One sentence has multiple outputs. The
first tuple <, cut, the cake using...> is taking cut as V and
using clause as ARG1 and the second tuple <the cake, us-
ing, a sharp knife> is taking using as V and a sharp knife as
ARG1. (1) we take V and ARG1 in the first tuple as action
and tail object, and ARG1 in the second tuple as head ob-
ject. Through this way, we get <a sharp knife, cut, cake us-
ing...>. (2) we apply dependency tree parser to ARG1 sen-
tences in both tuple and take the root as head and tail objects
respectively. Finally, we get the expected tuple <knife, cut,
cake>. Similarly, for the with clause, the extraction has a
with clause as ARG2, and we take the V as action, root of
ARG1 as tail, and root of ARG2 as head object.

After post processing, we have a group of seed tuples and
use them to relabel the sentences to train a model for extrac-
tion. The goal is to train a new RnnOIE model to directly
predict object-functionality tuple. Table 4 shows an exam-
ple of the label. In all, we have collected 266,827 sentences
for training.

Implementation setting We use the RnnOIE open source
code2 to run the model using the PyTorch framework. The
bi-LSTM model has 1 layer and each LSTM cell uses 128
hidden units followed by a ReLU activation function. We
train the model for 500 epochs with mini batch size as 80
and 0.001 as learning rate. We use GloVe 100-dimensions
word embeddings. Simultaneously, we use a dependency
parser3(Qi et al. 2018) to predict syntactic feature for ex-
tracting root entity.

2https://github.com/allenai/allennlp
3https://stanfordnlp.github.io/stanfordnlp/



Consolidation
At last, we link all the extracted tuples together to build an
object functionality knowledge graph. After consolidation,
we removed high frequency noisy objects such as people,
it, one, tool, this etc. and actions such as do, try, be, have
etc. Specifically, we remove head of entity type as person
which is likely to be stated as subject in many sentences.
E.g. ”people cut cake” rather than ”knife cut cake”. Table
5 lists the statistics of extraction results. Furthermore, we
adopt PMI to calcualte a prior score for each triplet in order
to rerank the frequently or rarely used tool, such as knife v.s.
spoon to cut cake.

PMI(h, t) = log
p(h, t)

p(h)p(t)
(1)

Table 5: Extraction results
#Head Object #Pair #Tuple

ConceptNet 3,243 13,857 27,043
Pattern 1 2,921 23,923 84,368
Pattern 2 2,384 15,192 20,068
Pattern 3 4,732 215,819 466,587
Model-based 6,028 60,713 101,257
Consolidation 7,602 278,679 649,060

Evaluation
We evaluate the performance of each method using the
Head-Action dataset described in section 3. We employ Pre
(precision), Rec (recall) and F1 as metrics to evaluate each
method. From the results shown in Table 6, we can see (1)
ConceptNet, collected in a crowdsourcing way, shows the
best precision but lowest recall. (2) pattern-based method
can enlarge the coverage a lot with the help of the large scale
Google N-gram dataset. (3) model-based method get bet-
ter precision than pattern-based method. (4) Consolidation
method significantly improves the coverage and achieves the
best F1 result.

Table 6: Performance of each extraction method
Pre Rec F1

ConceptNet 0.862 0.152 0.258
Pattern-based 0.632 0.536 0.580
Model-based 0.694 0.255 0.373
Consolidation 0.597 0.624 0.610

5 Object-functionality Prediction
In this section, we study the second research problem:
whether the object can perform the actions on another ob-
ject? We employ the object-functionality knowledge ex-
tracted in previous section and predict the plausibility score
for a new tuple. The key assumptions are: on one hand,
functionality can be identified by visual appearance to some
extent, and on the other hand, prior UsedFor knowledge is

powerful for reasoning the functionality. Motivated by this,
we propose a multi-stage model as shown in Figure 4. First,
we predict the object categories and functionality through a
pre-trained ResNet (He et al. 2016) to extract image feature
and a fully connect layer to do prediction. Both category and
functionality classification can do simultaneously or sepa-
rately. Furthermore, we adopt Dismult and Path Ranking
Module to inference the plausibility of a tuple <head, ac-
tion, tail>. Finally, we combine the score through weighted
combination.

FC
FC

FC

FC

FC

FC

...

Hammer

Object Classification

Functionality Classification

ResNet

Hit

Break

Clean

Cook

FC Build

Image Feature Extraction

Question: Can this break walnut?

Path Ranking 
Module

Linear
Combination

Answer: 
Yes

Figure 4: The framework of object-functionality prediction
module

Visual appearance module

According to (Azuma, Takiguchi, and Ariki ), object appear-
ance can be used to estimate the functionality to a great ex-
tent. Therefore, to predict functionality given an object im-
age, we directly use vision features to train models to pre-
dict object category as well as the functionality. To be spe-
cific, we adopt the image features from a pre-trained convo-
lutional model followed with object and functionality clas-
sifiers. In order to acquire the representation of each image,
we resize them to I ∈ R256×256 first and then use a 5-crop
(top-left, top-right, bottom-left, bottom-right and center) on
both original and left-right mirror flipped images as the in-
put data TI ∈ R10×224×224×3 (the last dimension repre-
sents the RGB channels). Next, we feed this augmented in-
put into an ImageNet pre-trained ResNet152(He et al. 2016)
model and extract the output of the last convolutional layer
CI ∈ R10×2048. After a mean pooling on the first dimension,
we finally get the image feature representation: FI ∈ R2048.

Then we use a fully connection layer with 512 neurons
followed by a batch normalization layer and a ReLU ac-
tivation layer to map the input image feature into a 512-
dimension feature vector. For object classifier, we use a fully
connection layer and train as a multi-label classification task.
As for functionality classification, we use 20 fully connec-
tion layer with binary output for each functionality. These
two modules will predict object category as well as a list of
recognized functionality.



Dismult inference module
The task is to link prediction given the head object is an
image. Dismult(Yang et al. 2015) is an effective knowledge
embedding method, which encodes the entities h, t and re-
lation a as representation vector such that valid triplets re-
ceive high scores. TransE(Bordes et al. 2013), the translation
based embedding methods has a basic principle: Hp + P ≈
Tp given the entity and predicate, e.g. EObama+Ppresident of≈
EAmerica. Our goal is to model commonsense knowledge in-
stead of encyclopedic knowledge. This assumption is hard to
satisfy for object-functionality tuples due to one object can
perform the same action on multiple various other objects.
E.g. knife can cut many objects like cake, banana, paper etc.
Different from TransE which only parametrizes the linear
relation operators, Dismult adopts bilinear scoring function

S(eh, et) = ehMaet (2)

where Ma is the tensor operator and the training objective is
to minimize margin-based ranking loss:

L =
∑

positive

∑
negative

max{Sp − Sn + 1, 0} (3)

where Sp is score of positive triplet and Sn is score of nega-
tive triplet.

To embed the knowledge graph effectively, we also link
consolidated object-functionality knowledge with IsA and
Synonym relation tuples in ConceptNet, which provide in-
tensive linkage between entities to relieve from the sparse-
ness and enrich inference paths.

To train the embedding model, the dimension is set to 200,
learning rate as 0.05, the batch size as 128 the negative sam-
ple number as 10. We adopted the AdaGrad optimizer and
set L2 regularization as 0.0001.

PRA inference module
Besides Dismult, we also employ the path ranking algo-
rithm4 (Lao, Mitchell, and Cohen 2011) to inference on the
consolidated graph described in section 4.4 for the follow-
ing consideration: PRA(Lao, Mitchell, and Cohen 2011) is
an explicit inference and output the possible path as reason.
In PRA, given<head, action, tail>, the goal is to predict the
plausibility score and paths of the tuple. We train a model
for each action by the algorithm 1.

Linear Combination
Finally, we combine the score predicted from visual appear-
ance and inference score using a linear combination:

S = α · Sv + β · Si (7)

Where Sv is the score from functionality classification
model and Si is the inference score of either PRA or Dis-
mult or both. In our experiment, α is 1.6 and β is 0.57 re-
spectively.

4https://github.com/David-Lee-1990/Path-ranking-algorithm

Algorithm 1 Training algorithm
Input: action a, graph tuples {<h, p, t>}
Output: model Sp

1: Iterate all pairs <h, p, t> from the graph, and select the
valid tuples for action a with p = a as positive data, and
randomly sample tuples from other relations ( p 6= a )
as negative data.

2: For each pair <h, t>, enumerate all possible paths as
features {F1, F2, F3, . . .} and Fi = {a1, a2, a3}. Here
we use at most 3-hop relations to learn the possible
paths.

3: Then we calculate the probability of each path through
the relation

Pr(t|h; a) =
a(h, t)∑
i a(h, ti)

(4)

Pr(F ) =
∑
i

Pr(t|h, ai) (5)

where a(h, t) is the count of action a from head h to tail
t

4: Next, we calculate the plausibility score of the tuple by
a learned weighted linear model

Sp =
∑
i

wi × Pr(Fi) (6)

5: Finally, we adopt regularized cross entropy loss to train
the model.

Evaluation
In this section, we first evaluate our end-to-end model for
object-functionality prediction task and then conduct abla-
tion study on visual appearance module and Inference mod-
ule separately. For evaluation metric, we use precision, recall
and F1 as evaluation metrics.

Prediction task To evaluate the object-functionality pre-
diction, we use 35,860 <head (image), action, tail> tuples
as test data and same number as validation from all 678,900
Head(image)-Action-Tail dataset, which share the same split
of the image dataset used in the following experiments for
visual object and functionality classification. We conduct ex-
periments on 5 different settings: Functionality Prediction
predicts the validity of tuples base on functionality (action)
recognized from the image without taking the tail object into
account; Object Prediction + PRA classifies the object cat-
egory through the image and then predict the plausibility of
the tuple as<predicted object, action, tail>using PRA; Sim-
ilarly, Object Prediction + Dismult predicts validity using
Dismult to inference; Moveover, Object Classification +
Both predicts score using linear combination of PRA and
Dismult to inference; Our Combination Model is to com-
bine the scores described in section 5.4.

From Table 7, we get three insights: (1) object classifi-
cation followed by either PRA or Dismult inference algo-
rithm performs worse than prediction by Functionality clas-
sification model directly, which shows it is effective to rec-



Table 7: Result of object-functionality prediction
Pre Rec F1

Functionality Prediction 0.741 0.771 0.756
Object Prediction + PRA 0.652 0.388 0.486
Object Prediction + Dismult 0.671 0.633 0.651
Object Prediction + Both 0.747 0.8139 0.7789
Our Combination Model 0.778 0.845 0.810

Table 8: Result of visual classification models
Pre Rec F1

Functionality
classification only model 0.771 0.701 0.734

Functionality + object
classification model 0.776 0.691 0.731

ognize the functionality from image appearance with super-
vised data, while object classification followed by a com-
bined inference performs better than prediction by Function-
ality classification model; (2) Dismult performs better than
PRA especially on Recall, which shows that implicit rep-
resentation by knowledge embedding encodes more infor-
mation; (3) the combination with both methods get the best
results. According to our analysis, object classification pre-
dicts the object category first, which leads to some error and
propagate to the next inference step. E.g. ”key” is recognized
as ”cutter”. While for other cases, although several objects
are mis-classified, e.g. knife is recognized as cutter, we find
that they have similar appearance and functionality. More-
over, ’Functionality Classification’ directly learns the func-
tionality through raw image, which can capture various de-
tailed low-level features. The second assumption mentioned
in Section 5 also holds true in most cases. “Knife” can “cut”
almost everything except something hard (like “diamond”).

Ablation study: visual module We study the perfor-
mance of functionality classification module. We split the
dataset into 3 parts with 630 testing images and 630 vali-
dation, and the result as training set. We use the 330 pos-
itive Head-Action pairs to annotate functionality of each
image. We compare the results of predicting functionality
and object categories in: (1) Functionality classification only
model; (2) Functionality + Object classification joint model.
From the results shown in Table 8, we get the comparable
result from both methods, and we apply the Functionality
classification only model in experiment.

Ablation study: Dismult module We train Dismult
model to embed either ConceptNet or consolidated graph
separately, and compared the performance using the object
functionality prediction task. Table 9 shows that with the
large consolidated graph, the prediction result outperforms
that of using ConceptNet graph.

Ablation study: PRA module We also evaluate PRA
module on ConceptNet and our consolidated graph on two

Table 9: Result of Dismult
Graph Pre Rec F1
ConceptNet 0.564 0.516 0.539
Consolidated 0.671 0.633 0.651

Table 10: Result of PRA
Data source Graph Pre Rec F1
Random sample ConceptNet 0.793 0.073 0.134
Head-Action-Tail ConceptNet 0.248 0.036 0.063
Random sample Consolidated 0.912 0.396 0.552
Head-Action-Tail Consolidated 0.729 0.41 0.525

test dataset: randomly sampled data from each graph and
3,900 Head-Action-Tail tuples. From the results in Table 10,
we can see that by using our consolidated graph, both the
coverage(Recall) and precision outperforms compared the
result using ConceptNet graph, which verifies the effective-
ness of our extraction method. Simultaneously, the Head-
Action-Tail dataset has different distribution and thus has
worse performs than the randomly sampled dataset from the
original graph. Besides, we analysis the performance of each
action in details. Action cut performs the best, while roll re-
pair, decorate performs the worst due to knowledge graph
sparseness. Given the action ”cut” has rich and dense tuples,
the performance has achieved the best. Along with more
knowledge, it is easier for inference.

Case study We analyse several cases and find two in-
sights: 1) If the object classification is incorrect, the func-
tionality prediction may be correct, e.g. ”mallet” is classi-
fied as ”hammer”, and ”cutter” is predicted as ”knife”. De-
spite inaccurate object classification, we still get correct pre-
diction due to the same functionality of these objects with
similar appearance. 2) Even though the object classifica-
tion is correct, the triplet may not. As discussed in Ablation
study, although the function ”cut” prediction gets high accu-
racy, there are still some errors. One typical error example is
that ”scissors cut cake”: although ”scissors” can ”cut” many
things, people rarely use it to ”cut cake”.

6 Conclusion
We propose two research problems: (1) What functional-
ity/actions an object has? (2) Whether the object can per-
form action on another object? Object-functionality knowl-
edge is important in robotic community for robots to com-
plete a task. We first mine object functionality knowledge
from text data, and then introduce a new task for object-
functionality prediction to simulate what the robot perceive.
According to our experiment, we found 1) the extraction
method can increase the graph in a large scale, and the ex-
tracted tuples are effective for further link prediction task
and functionality(image as head entity) prediction task. 2)
Dismult models with implicit representation perform better
than explicit PRA model for inference.
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