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Abstract

We consider the adaptive influence maximization problem: given a network and a budget k,
iteratively select k seeds in the network to maximize the expected number of adopters. In the
full-adoption feedback model, after selecting each seed, the seed-picker observes all the resulting
adoptions. In the myopic feedback model, the seed-picker only observes whether each neighbor of
the chosen seed adopts. Motivated by the extreme success of greedy-based algorithms/heuristics
for influence maximization, we propose the concept of greedy adaptivity gap, which compares the
performance of the adaptive greedy algorithm to its non-adaptive counterpart. Our first result
shows that, for submodular influence maximization, the adaptive greedy algorithm can perform
up to a (1 − 1/e)-fraction worse than the non-adaptive greedy algorithm, and that this ratio is
tight. More specifically, on one side we provide examples where the performance of the adaptive
greedy algorithm is only a (1 − 1/e) fraction of the performance of the non-adaptive greedy
algorithm in four settings: for both feedback models and both the independent cascade model
and the linear threshold model. On the other side, we prove that in any submodular cascade, the
adaptive greedy algorithm always outputs a (1 − 1/e)-approximation to the expected number
of adoptions in the optimal non-adaptive seed choice. Our second result shows that, for the
general submodular cascade model with full-adoption feedback, the adaptive greedy algorithm
can outperform the non-adaptive greedy algorithm by an unbounded factor. Finally, we propose
a risk-free variant of the adaptive greedy algorithm that always performs no worse than the non-
adaptive greedy algorithm.

1 Introduction

The influence maximization problem (InfMax) is an optimization problem that asks which seeds
a viral marketing campaign should target (e.g. by giving free products) so that propagation from
these seeds influences the most people in a social network. That is, given a graph, a stochastic
diffusion model defining how each node is infected by its neighbors, and a limited budget k, how
to pick k seeds such that the expected number of total infected nodes in this graph at the end of
the diffusion is maximized. This problem has significant applications in viral marketing, outbreak
detection, rumor controls, etc, and has been extensively studied (cf. Chen et al. [9], Li et al. [22]).

For InfMax, most of the existing work has considered submodular diffusion models, especially
the independent cascade model and the linear threshold model [19]. Likewise, we also focus on
submodular diffusion models. In submodular diffusion models, a vertex v’s marginal probability
of becoming infected after a new neighbor t is infected given S as the set of v’s already infected
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neighbors is at least the marginal probability that v is infected after t is newly infected given T ⊇ S
as the set of v’s already infected neighbors (see the paragraph before Theorem 2.4 for more details).
Intuitively, this means that the influence of infected nodes are substitutes and never have synergy.

When submodular InfMax is considered, nearly all the known algorithms/heuristics are based
on a greedy algorithm that iteratively picks the seed that has the largest marginal influence. Some of
them improve the running time of the original greedy algorithm by skipping vertices that are known
to be suboptimal [21, 15], while the others improve the scalability of the greedy algorithm by using
more scalable algorithms to approximate the expected total influence [4, 33, 34, 10, 25] or computing
a score of the seeds that is closely related to the expected total influence [6, 8, 7, 16, 18, 12, 32, 29].
Arora et al. [2] benchmark most of the aforementioned variants of the greedy algorithms.

In this paper, we study the adaptive influence maximization problem, where seeds are selected
iteratively and feedback is given to the seed-picker after selecting each seed. Two different feedback
models have been studied in the past: the full-adoption feedback model and the myopic feedback
model [14]. In the full-adoption feedback model, the seed-picker sees the entire diffusion process
of each selected seed, and in the myopic feedback model the seed-picker only sees whether each
neighbor of the chosen seed is infected.

Past literature focused on the adaptivity gap—the ratio between the performance of the optimal
adaptive algorithm and the performance of the optimal non-adaptive algorithm [14, 26, 5]. However,
even in the non-adaptive setting, InfMax is known to be APX-hard [19, 29]. As a result, in practice,
it is not clear whether the adaptivity gap can measure how much better an adaptive algorithm can
do.

In this paper, we define and consider the greedy adaptivity gap, which is the ratio between the
performance of the adaptive greedy algorithm and the non-adaptive greedy algorithm. We focus
on the gap between the greedy algorithms for three reasons. First, as we mentioned, the APX-
hardness of InfMax renders the practical implications of the adaptivity gap unclear. Second,
as we remarked at the beginning, the greedy algorithm is used almost exclusively in the context
of influence maximization. Third, the iterative nature of the original greedy algorithm naturally
extends to the adaptive setting.

1.1 Our Results

We show that, for the general submodular diffusion models, with both the full-adoption feedback
model and the myopic feedback model, the infimum of the greedy adaptivity gap is exactly (1−1/e).
In addition, this result can be extended to the two well-studied submodular diffusion models: the
independent cascade model and the linear threshold model. This is proved in two steps.

In the first step, we show that there are InfMax instances where the adaptive greedy algorithm
can only produce (1−1/e) fraction of the influence of the solution output by the non-adaptive greedy
algorithm. This result is surprising: one would expect that the adaptivity is always helpful, as the
feedback provides more information to the seed-picker, which makes the seed-picker refine the seed
choices in future iterations. Our result shows that this is not the case, and the feedback, if overly
used, can make the seed-picker act in a more myopic way, which is potentially harmful.

In the second step, we show that the adaptive greedy algorithm always achieves a (1 − 1/e)-
approximation of the non-adaptive optimal solution, so its performance is always at least a (1−1/e)
fraction of the performance of the non-adaptive greedy algorithm. In particular, combining the two
steps, we see that when the adaptive greedy algorithm output only obtains a (nearly) (1 − 1/e)-
fraction of the performance of the non-adaptive greedy algorithm, the non-adaptive greedy algo-
rithm is (almost) optimal. This worst-case guarantee indicates that the adaptive greedy algorithm
will never be too bad.
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model AG GAG inf GAG sup

ICM, full-adoption at least e/(e− 1) [5] 1− 1/e (Thm 3.1) unknown
ICM, myopic at least e/(e− 1), at most 4 [26] 1− 1/e (Thm 3.1) unknown
LTM, full-adoption unknown 1− 1/e (Thm 3.1) unknown
LTM, myopic unknown 1− 1/e (Thm 3.1) unknown
GSDM, full-adoption ∞ (Thm 4.2) 1− 1/e (Thm 3.1) ∞ (Thm 4.1)
GSDM, myopic at least e/(e− 1) (implied by [26]) 1− 1/e (Thm 3.1) unknown

Table 1: Results for the adaptivity gap (AG), the infimum of the greedy adaptivity gap (GAG
inf) and the supremum of the greedy adaptivity gap (GAG sup), where GSDM stands for general
submodular diffusion model.

As the second result, we show that the supremum of the greedy adaptivity gap is infinity, for the
general submodular diffusion model with full-adoption feedback. This indicates that the adaptive
greedy algorithm can perform significantly better than its non-adaptive counterpart. We also show,
with almost the same proof, that the adaptivity gap in this setting (general submodular model with
full-adoption feedback) is also unbounded.

Finally, we propose a risk-free but more conservative variant of the adaptive greedy algorithm,
which always performs at least as well as the non-adaptive greedy algorithm. We recommend both
the adaptive greedy algorithm and this variant.

1.2 Related Work

The influence maximization problem was initially posed by Domingos and Richardson [11], Richard-
son and Domingos [27]. Kempe et al. [19] proposed the linear threshold model and the independent
cascade model, and show that they are submodular. Whenever a diffusion model is submodular,
the greedy algorithm was shown to obtains a (1 − 1/e)-approximation to the optimal number of
infections [24, 19, 20, 23].

For adaptive InfMax, Golovin and Krause [14] showed that InfMax with the independent
cascade model and full-adoption feedback is adaptive submodular, which implies that the adaptive
greedy algorithm obtains a (1−1/e)-approximation to the adaptive optimal solution. On the other
hand, InfMax for the independent cascade model with myopic feedback, as well as InfMax for the
linear threshold model with both feedback models, are not adaptive submodular. In particular, the
adaptive greedy algorithm fails to obtain a (1 − 1/e)-approximation for the independent cascade
model with myopic feedback [26]. Peng and Chen [26] showed that the adaptivity gap for the
independent cascade model with myopic feedback is at most 4 and at least e/(e − 1), and they
also showed that both the adaptive and non-adaptive greedy algorithms perform a 0.25(1 − 1/e)-
approximation to the adaptive optimal solution. The adaptivity gap for the independent cascade
model with full-adoption feedback, as well as the adaptivity gap for the linear threshold model with
both feedback models, are still open problems, although there is some partial progress [5].

Our paper is not the first work studying the adaptive greedy algorithm. Previous work focused
on improving the running time of the adaptive greedy algorithm [17]. However, to the best of our
knowledge, our work is the first one that compares the adaptive greedy algorithm to its non-adaptive
counterpart.

Finally, we remark that there do exist InfMax algorithms that are not based on greedy [3, 13,
1, 28, 30, 31], but they are typically for non-submodular diffusion models.

We summarize the existing results about the adaptivity gap and our new results about the
greedy adaptivity gap in Table 1.
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2 Preliminary

All graphs in this paper are simple and directed. Given a graph G = (V,E) and a vertex v ∈ V ,
let Γ(v) and deg(v) be the set of in-neighbors and the in-degree of v respectively.

2.1 Triggering Model

We consider the well-studied triggering model [19], which is commonly used to capture “general”
submodular diffusion models. A more general way to capture submodular diffusion models is the
general threshold model [19] with submodular local influence functions. All our results hold under
this setting as well. We will discuss this in Appendix B.

Definition 2.1 (Kempe et al. [19]). The triggering model, IG,F , is defined by a graph G = (V,E)
and for each vertex v a distribution Fv over the subset of its in-neighbors {0, 1}|Γ(v)| . Let F =
{Fv | v ∈ V }.

On an input seed set S ⊆ V , IG,F (S) outputs a set of infected vertices as follows:
1. Initially, only vertices in S are infected. Each vertex v samples a subset of its in-neighbors

Tv ⊆ Γ(v) from Fv independently. We call Tv the triggering set of v.
2. In each subsequent round, a vertex v becomes infected if a vertex in Tv is infected in the

previous round.
3. After a round where no additional vertices are infected, the set of infected vertices is the

output.

IG,F in Definition 2.1 can be viewed as a random function IG,F : {0, 1}|V | → {0, 1}|V |. In
addition, if the triggering set Tv is fixed for each vertex v, then IG,F is deterministic. Given v, its
triggering set Tv, and an in-neighbor u ∈ Γ(v), we say that the edge (u, v) is live if u ∈ Tv, and we
say that (u, v) is blocked if u /∈ Tv. It is easy to see that, when the triggering sets for all vertices
are sampled, IG,F (S) is the set of all vertices that are reachable from S when removing all blocked
edges from the graph.

We define a realization of a graph G = (V,E) as a function φ : E → {L, B} such that φ(e) =

L if e ∈ E is live and φ(e) = B if e ∈ E is blocked. Let IφG,F : {0, 1}|V | → {0, 1}|V | be the
deterministic function corresponding to the triggering model IG,F with vertices’ triggering sets
following realization φ. We write φ ∼ F to indicate that a realization φ is sampled according to
F = {Fv}.

The triggering model captures the well-known independent cascade and linear threshold models.
In the two definitions below, we define the two models in terms of the triggering model, which is
sufficient for this paper. In Appendix A, we present the original definitions and give some intuitions
for the two models for those readers who are not familiar with them.

Definition 2.2. The independent cascade model ICM is a special case of the triggering model IG,F

where G = (V,E,w) is an edge-weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E and Fv is
the distribution such that each u ∈ Γ(v) is included in Tv with probability w(u, v) independently.

Definition 2.3. The linear threshold model LTM is a special case of the triggering model IG,F where
G = (V,E,w) is an edge-weighted graph with w(u, v) > 0 for each (u, v) ∈ E and

∑

u∈Γ(v) w(u, v) ≤
1 for each v ∈ V , and Fv is the distribution defined as follows: order v’s in-neighbors u1, . . . , uT
arbitrarily, sample a real number r in [0, 1] uniformly, and

Tv =

{

{ut} if r ∈
[

∑t−1
i=1 w(ui, v),

∑t
i=1 w(ui, v)

)

∅ if r ≥∑T
i=1w(ui, v)

.
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Intuitively, Tv includes at most one of v’s in-neighbors such that each ut is included with probability
w(ut, v).

Given a triggering model IG,F , let σG,F : {0, 1}|V | → R≥0 be the global influence function

defined as σG,F (S) = Eφ∼F [|IφG,F (S)|]. We drop the subscripts G,F and write the global influence
function as σ(·) when there is no ambiguity.

A function f mapping from a set of elements to a non-negative value is submodular if f(A ∪
{v}) − f(A) ≥ f(B ∪ {v}) − f(B) for any two sets A,B with A ( B and any element v /∈ B.

Theorem 2.4 (Kempe et al. [19]). For any triggering model IG,F , σG,F (·) is submodular. In
particular, σG,F (·) is submodular for both ICM and LTM.

2.2 InfMax and Adaptive InfMax

Definition 2.5. The influence maximization problem (InfMax) is an optimization problem which
takes inputs G = (V,E), F , and k ∈ Z+, and outputs a seed set S that maximizes the expected
total number of infections: S ∈ argmaxS⊆V :|S|≤k σ(S).

In the remaining part of this subsection, we define the adaptive version of the influence max-
imization problem. We will define two different models: the full-adoption feedback model and the
myopic feedback model. Suppose a seed set S ⊆ V is chosen by the seed-picker, and an underlying
realization φ is given but not known by the seed-picker. Informally, in the full-adoption feedback
model, the seed-picker sees all the vertices that are infected by S in all future iterations, i.e., the
seed-picker sees IφG,F (S). In the myopic feedback model, the seed-picker only sees the states of S’s
neighbors, i.e., whether each vertex in {v | ∃s ∈ S : s ∈ Γ(v)} is infected.

Define a partial realization as a function ϕ : E → {L, B, U} such that φ(e) = L if e is known to
be live, φ(e) = B if e is known to be blocked, and φ(e) = U if the status of e is not yet known.
We say that a partial realization ϕ is consistent with the full realization φ, denoted by φ ≃ ϕ, if
φ(v) = ϕ(v) whenever ϕ(v) 6= U. For the ease of notation, for an edge (u, v) ∈ E, we will write
φ(u, v), ϕ(u, v) instead of φ((u, v)), ϕ((u, v)).

Definition 2.6. Given a triggering model IG=(V,E),F with a realization φ, the full-adoption feedback

is a function Φf
G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(u, v) = φ(u, v) for each u ∈ IφG,F (S), and

• ϕ(u, v) = U for each u /∈ IφG,F (S).

Definition 2.7. Given a triggering model IG=(V,E),F with a realization φ, the myopic feedback is
a function Φm

G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(u, v) = φ(u, v) for each u ∈ S, and

• ϕ(u, v) = U for each u /∈ S.

An adaptive policy π is a function that maps a seed set S and a partial realization ϕ to a
vertex v = π(S,ϕ), which corresponds to the next seed the policy π would choose given ϕ and S
being the set of seeds that has already been chosen. Naturally, we only care about π(S,ϕ) when
ϕ = Φf

G,F,φ(S) or ϕ = Φm
G,F,φ(S), although we define π that specifies an output for any possible

inputs S and ϕ. Notice that we have defined π as a deterministic policy for simplicity, and our
results hold for randomized policies. Let Π be the set of all possible adaptive policies.
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Notice that an adaptive policy π completely specifies a seeding strategy in an iterative way.
Given an adaptive policy π and a realization φ, let S f(π, φ, k) be the first k seeds selected according
to π with the underlying realization φ under the full-adoption feedback model. By on our definition,
S f(π, φ, k) can be computed as follows:

1. initialize S = ∅;

2. update S = S ∪ {π(S,Φf
G,F,φ(S))} for k iterations;

3. output S f(π, φ, k) = S.

Define Sm(π, φ, k) similarly for the myopic feedback model, where Φm
G,F,φ(S) instead of Φf

G,F,φ(S)
is used in Step 2 above.

Let σf(π, k) be the expected number of infected vertices given that k seeds are chosen according

to π, i.e., σf(π, k) = Eφ∼F [|IφG,F (S f(π, φ, k))|]. Define σm(π, k) similarly for the myopic feedback
model.

Definition 2.8. The adaptive influence maximization problem (adaptive InfMax) is an opti-
mization problem which takes as inputs G = (V,E), F , and k ∈ Z+, and outputs an adap-
tive policy π that maximizes the expected total number of infections: π ∈ argmaxπ∈Π σf(π, k) or
π ∈ argmaxπ∈Π σm(π, k) (depending on the feedback model used).

2.3 Adaptivity Gap and Greedy Adaptivity Gap

The adaptivity gap is defined as the ratio between the performance of the optimal adaptive policy
and the performance of the optimal non-adaptive seeding strategy. In this paper, we only consider
the adaptivity gap for triggering models.

Definition 2.9. The adaptivity gap with full-adoption feedback is

sup
G,F,k

maxπ∈Π σf(π, k)

maxS⊆V,|S|≤k σ(S)
.

The adaptivity gap with myopic feedback is defined similarly.

The (non-adaptive) greedy algorithm iteratively picks a seed that has the maximum marginal
gain to the objective function σ(·):

1. initialize S = ∅;

2. update for k iterations S = S ∪ {s}, where s ∈ argmaxs∈V σ(S ∪ {s}) with tie broken in an
arbitrarily consistent order;

3. return S.

Let Sg(k) be the set of k seeds output by the (non-adaptive) greedy algorithm.
The greedy adaptive policy πg is defined as πg(S,ϕ) = s such that

s ∈ argmax
s∈V

E
φ≃ϕ

[∣

∣

∣
IφG,F (S ∪ {s})

∣

∣

∣

]

,

with tie broken in an arbitrary consistent order.
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Definition 2.10. Given a triggering model IG,F and k ∈ Z+, the greedy adaptivity gap with full-

adoption feedback is σf(πg ,k)
σ(Sg(k)) . The greedy adaptivity gap with myopic feedback is defined similarly.

Notice that, unlike the adaptivity gap in Definition 2.9, we leave G,F, k unspecified (instead
of taking a supremum over them) when defining the greedy adaptivity gap. This is because we

are interested in both supremum and infimum of the ratio σf(πg,k)
σ(Sg(k)) . Notice that the infimum of

the ratio maxπ∈Π σf(π,k)
maxS⊆V,|S|≤k σ(S) in Definition 2.9 is 1: the optimal adaptive policy is at least as good as

the optimal non-adaptive policy, as the non-adaptive policy can be viewed as a special adaptive
policy; on the other hand, it is easy to see that there are InfMax instances such that the optimal
adaptive policy is no better than non-adaptive one (for example, a graph containing k vertices but
no edges). For this reason, we only care about the supremum of this ratio.

3 Infimum of Greedy Adaptivity Gap

In this section, we show that the infimum of the greedy adaptivity gap for the triggering model is
exactly (1− 1/e), for both the full-adoption feedback model and the myopic feedback model. This
implies that the greedy adaptive policy can perform even worse than the conventional non-adaptive
greedy algorithm, but it will never be significantly worse. Moreover, we show that this result also
holds for both ICM (Definition 2.2) and LTM (Definition 2.3).

Theorem 3.1. For the full-adoption feedback model,

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

In Sect. 3.1, we show by providing examples that the greedy adaptive policy in the worst case
will only achieves (1− 1/e+ ε)-approximation of the expected number of infected vertices given by
the non-adaptive greedy algorithm, for both ICM and LTM.

In Sect. 3.2, we shows that the greedy adaptive policy has performance at least (1 − 1/e) of
the performance of the non-adaptive optimal seeds (Theorem 3.5). Theorem 3.5 provides a lower
bound on the greedy adaptivity gap for the triggering model and is also interesting on its own.
At the end of Sect. 3.2, we prove Theorem 3.1 by putting the results from Sect. 3.1 and Sect. 3.2
together.

3.1 Tight Examples

In this subsection, we show that the adaptive greedy algorithm can perform worse than the non-
adaptive greedy algorithm by a factor of (1 − 1/e + ε), for both ICM and LTM and any ε > 0. This
may be surprising, as one would expect that the feedback provided to the seed-picker will refine
the seed choices in the future iterations. Here, we provide some intuitions why adaptivity can
sometimes hurt. Suppose there are two promising sequences of seed selections, {s, u1, . . . , uk} and
{s, v1, . . . , vk}, such that

• s is the best seed which will be chosen first;

• {s, u1, . . . , uk} has a better performance;
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• the influence of u1, . . . , uk are non-overlapping, the influence of v1, . . . , vk are non-overlapping,
but the influence of ui, vj overlaps for each i, j; moreover, if u1 is picked as the second seed,
the greedy algorithm, adaptive or not, will continue to pick u2, . . . , uk, and if v1 is picked as
the second seed, v2, . . . , vk will be picked next;

Now, suppose there is a vertex t elsewhere which can be infected by both s and v1, such that

• if t is infected by s, which slightly reduces the marginal influence of v1, v1 will be less promising
than u1;

• if t is not infected by s, v1 is more promising than u1;

• in average, when there is no feedback, v1 is still less promising than u1, even after adding the
increment in t’s infection probability to v1’s expected marginal influence.

In this case, the non-adaptive greedy algorithm will “go to the right trend” by selecting u1 as the
second seed; the adaptive greedy algorithm, if receiving feedback that t is not infected by s, will
“go to the wrong trend” by selecting v1 next.

As a high-level description of the lesson we learned, both versions of the greedy algorithms are
intrinsically myopic, and the feedback received by the adaptive policy may make the seed-picker
act in a more myopic way, which could be more hurtful to the final performance.

We will assume in the rest of this section that vertices can have positive integer weights, as
justified in the following remark.

Remark 3.2. For both ICM and LTM, we can assume without loss of generality that each vertex has
a positive integer weight, so that, in InfMax, we are maximizing the expected total weight of the
infected vertices instead of maximizing the expected number of infected vertices as before. Suppose
we want to make a vertex v have weight W ∈ Z+. We can construct W − 1 vertices w1, . . . , wW−1,
and create W − 1 directed edges (v,w1), . . . , (v,wW−1) with weight 1. (Recall from Definition 2.2
and Definition 2.3 that the graphs in both ICM and LTM are edge-weighted, and the weights of edges
completely characterize the collection of triggering set distributions F .) It is straightforward from
Definition 2.2 and Definition 2.3 that, for both ICM and LTM, each of w1, . . . , wW−1 will be infected
with probability 1 if v is infected. In addition, both the greedy algorithm and the greedy adaptive
policy will never pick any of w1, . . . , wW−1 as seeds, as seeding v is strictly better. Therefore, we
can consider the subgraph consisting of v,w1, . . . , wW−1 as a gadget that representing a vertex v
having weight W .

Lemma 3.3. For any ε, there exists G,F, k such that IG,F is an ICM and

σf(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε,

σm(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε.

Proof. We will construct an InfMax instance (G = (V,E,w), k +1) with k+1 seeds allowed. Let
W ∈ Z+ be a sufficiently large perfect square divisible by k2k and whose value are to be decided
later. The vertex set V contains the following weighted vertices:

• a vertex s that has weight 2W ;

• a vertex t that has weight
√
W/k;

• 2k vertices u1, . . . , uk, v1, . . . , vk that have weight 1;

• k(k + 1) vertices {wij | i = 1, . . . , k + 1; j = 1, . . . , k}

8



– w11, . . . , w1k have weight W
k ;

– wi1, . . . , wik have weight 1
k (1− 1

k )
i−1W +

√
W for each i = 2, . . . , k;

– w(k+1)1, . . . , w(k+1)k have weight (1− 1
k )

kW +
√
W−k
k − (k − 1)

√
W .

The edge set E is specified as follow:

• create two edges (v1, t) and (s, t);

• for each i = 1, . . . , k, create k+1 edges (ui, w1i), (ui, w2i), . . . , (ui, w(k+1)i), and create k edges
(vi, wi1), (vi, wi2), . . . , (vi, wik).

For the weights of edges, all the edges have weight 1 except for the edge (s, t) which has weight
2k/

√
W .

It is straightforward to check that σ({s}) = 2W + 2k√
W
w(t) = 2W + 2, σ({ui}) = 1 +

∑k+1
j=1 w(wji) = 1 + W +

√
W−k
k for each ui, σ({v1}) = 1 + w(t) +

∑k
j=1w(w1j) = 1 +

√
W
k + W ,

σ({vi}) = 1 +
∑k

j=1w(wij) = 1+ (1− 1
k )

i−1W + k
√
W for each v2, . . . , vk, and the influence of the

remaining vertices are significantly less than these.
Since s has the highest influence, both the greedy algorithm and the greedy adaptive policy will

choose s as the first seed.
For the non-adaptive greedy algorithm, the next seed will be one of u1, . . . , uk, each of which

contributes 1 + W +
√
W−k
k infected vertices. To see this, the only seed that is comparable to

u1, . . . , uk is v1. However, since t will be infected by s (which has already been chosen as a seed)
with probability 2k√

W
, the marginal contribution of v1 will be slightly less than σ({v1}), and it will

be 1 +W + (1− 2k√
W
)
√
W
k = 1 +W +

√
W−2k
k , which is less than the marginal contribution of each

of u1, . . . , uk. Since the influence of u1, . . . , uk are non-overlapping, it is straightforward to check
that the non-adaptive greedy algorithm will choose {s, u1, . . . , uk}, which will infect vertices with
a total weight of

w(s) +
2k√
W

w(t) + k +
k+1
∑

i=1

k
∑

j=1

w(wij) = (k + 2)W +O
(√

W
)

in expectation.
The second seed picked by the greedy adaptive policy will depend on whether t is infected by

s. Notice that the status of t is available to the policy in both the full-adoption feedback model
and the myopic feedback model, so the arguments here, as well as the remaining part of this proof,
apply to both feedback models. By straightforward calculations, the greedy adaptive policy will
pick v1 as the next seed if t is not infected by s, and the policy will pick a seed from u1, . . . , uk
otherwise.

In the latter case, the policy will eventually pick the seed set {s, u1, . . . , uk}, which will infect
vertices with a total weight of

w(s) + w(t) + k +

k+1
∑

i=1

k
∑

j=1

w(wij) = (k + 2)W +O
(√

W
)

with probability 1 (notice that we are in the scenario that t has been infected by s).
In the former case, we can see that the third seed picked by the policy will be v2 instead of

any of u1, . . . , uk. In particular, v2 contributes (1 − 1
k )W + k

√
W infected vertices. On the other
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hand, since w11, . . . , wik have already been infected by v1, the marginal contribution for each ui is

σ({ui}) − w(w1i) = (1 − 1
k )W + 1 +

√
W−k
k , which is less than the contribution of v2. By similar

analysis, we can see that the greedy adaptive policy in this case will pick the seed set {s, v1, . . . , vk},
which will infect vertices with a total weight of

w(s) + w(t) + k +
k
∑

i=1

k
∑

j=1

w(wij) =

(

2 + k

(

1−
(

1− 1

k

)k
))

W +O
(√

W
)

in expectation (notice that w(k+1)1, . . . , w(k+1)k are not infected).

Since t will be infected with probability 2k√
W
, the expected weight of infected vertices for the

greedy adaptive policy is

2k√
W

(

(k + 2)W +O
(√

W
))

+

(

1− 2k√
W

)

·
((

2 + k

(

1−
(

1− 1

k

)k
))

W +O
(√

W
)

)

=

(

2 + k

(

1−
(

1− 1

k

)k
))

W +O
(

k2
√
W
)

.

Putting together, both σf (πg,k)
σ(Sg(k)) and σm(πg ,k)

σ(Sg(k)) in this case equal to

(

2 + k
(

1−
(

1− 1
k

)k
))

W +O
(

k2
√
W
)

(k + 2)W +O
(√

W
) ,

which has limit 1− 1/e when both W and k tend to infinity.

Lemma 3.4. For any ε, there exists G,F, k such that IG,F is an LTM and

σf(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε,

σm(πg, k)

σ(Sg(k))
≤ 1− 1

e
+ ε.

Proof. We will construct an InfMax instance (G = (V,E,w), k +1) with k+1 seeds allowed. Let
W ∈ Z+ be a sufficiently large perfect square divisible by k2k and whose value are to be decided
later. The vertex set V contains the following weighted vertices:

• a vertex s that has weight 2W ;

• a vertex t that has weight
√
W/k;

• k vertices u1, . . . , uk that have weight 1;

• k vertices v1, . . . , vk such that w(v1) = W + 1 and w(vi) = W (1 − 1
k )

i−1 +
√
W for each

i = 2, . . . , k;

• k vertices vk+1, . . . , v2k such that vk+1, . . . , v2k−1 have weight W (1− 1
k )

k and w(v2k) = W (1−
1
k )

k +
√
W − k − (k − 1)

√
W − 1.

The edge set E and the weights of edges are specified as follow:

• create two edges (v1, t) and (s, t) with weights 1− 2k√
W

and 2k√
W

respectively;
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• create 2k2 edges {(ui, vj) | i = 1, . . . , k; j = 1, . . . , 2k}, each of which has weight 1
k .

It is easy to check that the weights of the incoming edges for each vertex v satisfy
∑

u∈Γ(v) w(u, v) ≤
1, as required in Definition 2.3.

The remaining part of the analysis is similar to the proof of Lemma 3.3. The first seed chosen by

both algorithms is s. After this, each ui has marginal influence 1+ 1
k

∑2k
i=1w(vi) = 1+W +

√
W−k
k .

Since t is infected by s with probability 2k√
W
, the marginal influence of v1 without any feedback is

(1− 2k√
W
)w(t) +w(v1) = 1+W +

√
W−2k
k . If t is known to be infected, the marginal influence of v1

is 1+W ; if t is known to be uninfected, the marginal influence of v1 is 1+W +
√
W
k . By comparing

these values, the non-adaptive greedy algorithm will pick one of u1, . . . , uk as the second seed, and
the greedy adaptive policy will pick v1 as the second seed if t is not infected and one of u1, . . . , uk
as the second seed if t is infected. (Notice that w(v1) > w(v2) > · · · > w(vk) > w(vk+1) = · · · =
w(v2k−1) > w(v2k).)

Simple analyses show that the non-adaptive greedy algorithm will choose seeds {s, u1, . . . , uk},
which will infect all of v1, . . . , v2k with probability 1, and the adaptive greedy policy will choose
{s, v1, . . . , vk} with a very high probability 1− 2k√

W
, which will leave vk+1, . . . , v2k uninfected. Since

s, v1, . . . , v2k are the only vertices with weight Θ(W ) and we have both
∑k

i=1 w(vi) = (1 − (1 −
1
k )

k)W +O(
√
W ) and

∑2k
i=1w(vi) = W +O(

√
W ), the lemma follows by taking the limit W → ∞

and k → ∞.

3.2 Lower Bound

Theorem 3.5. For a triggering model IG,F , we have both

σf(πg, k) ≥
(

1− 1

e

)

max
S⊆V,|S|≤k

σ(S) and σm(πg, k) ≥
(

1− 1

e

)

max
S⊆V,|S|≤k

σ(S).

For a high-level idea of the proof, let S with |S| = i be the seeds picked by πg for the first
i iterations and S∗ be the optimal non-adaptive seed set: S∗ ∈ argmax|S′|≤k σ(S

′). Given S as
the existing seeds and any feedback (myopic or full-adoption) corresponding to S, we can show
that the marginal increment to the expected influence caused by the (i + 1)-th seed picked by
πg is at least 1/k of the marginal increment to the expected influence caused by S∗. Then, a
standard argument showing that the greedy algorithm can achieve a (1 − 1/e)-approximation for
any submodular monotone optimization problem can be used to prove this theorem.

Theorem 3.5 is implied by the following three propositions. In the remaining part of this section,
we let S∗ be an optimal seed set for the non-adaptive InfMax: S∗ ∈ maxS⊆V,|S|≤k σ(S).

We first show that the global influence function after fixing a partial seed set S and any possible
feedback of S is still submodular.

Proposition 3.6. Given a triggering model IG,F , any S ⊆ V , any feedback model (either full-
adoption or myopic) and any partial realization ϕ that is a valid feedback of S (i.e., ∃φ : ϕ =

Φf
G,F,φ(S) or ∃φ : ϕ = Φm

G,F,φ(S), depending on the feedback model considered), the function T :

{0, 1}|V | → R≥0 defined as T (X) = Eφ≃ϕ[|IφG,F (S ∪X)|] is submodular.

Proof. Fix a feedback model, S ⊆ V and ϕ that is a valid feedback of S. Let S be the set of infected
vertices indicated by the feedback of S. Formally, S is the set of all vertices that are reachable
from S by only using edges e with ϕ(e) = L.

We consider a new triggering model IG′,F ′ defined as follows:
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• G′ shares the same vertex set with G;

• The edge set of G′ is obtained by removing all edges e in G with ϕ(e) 6= U;

• The distribution F ′
v is normalized from Fv. Specifically, for each Tv ⊆ Γ(v), let p(Tv) be

the probability that Tv is chosen as the triggering set under Fv. Let Γ′(v) be the set of v’s
in-neighbors in G′, and we have Γ′(v) ⊆ Γ(v) by our construction. Then, F ′

v is defined such
that Tv ⊆ Γ′(v) is chosen as the triggering set with probability p(Tv)/

∑

T ′
v⊆Γ′(v) p(T

′
v).

A simple coupling argument reveals that

T (X) = E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪X)

∣

∣

∣

]

= σG′,F ′(S ∪X). (1)

We define a coupling of a realization φ of G with φ ≃ ϕ to a realization φ′ of G′ in a natural way:
φ(e) = φ′(e) for all edges e in G′. From our construction of F ′ = {F ′

v}, it is easy to see that, when
φ is coupled with φ′, the probability that φ is sampled under IG,F conditioning on φ ≃ ϕ equals
to the probability that φ′ is sampled under IG′,F ′ . Under this coupling, it is easy to see that u is
reachable from S by live edges under φ if and only if it is reachable from S by live edges under φ′.
This proves Eqn. (1).

Finally, by Theorem 2.4, σG′,F ′(·) is submodular. Therefore, for any two vertex sets A,B with
A ( B and any u /∈ B,

T (A ∪ {u}) − T (A) = σG′,F ′(S ∪A ∪ {u})− σG′,F ′(S ∪A)

is weakly larger than

T (B ∪ {u})− T (B) = σG′,F ′(S ∪B ∪ {u}) − σG′,F ′(S ∪B)

if u /∈ S, and
T (A ∪ {u})− T (A) = T (B ∪ {u}) − T (B) = 0

if u ∈ S. In both case, the submodularity of T (·) holds.

Next, we show that the marginal gain to the global influence function after selecting one more
seed according to πg is at least 1/k fraction of the marginal gain of including all the vertices in S∗

as seeds.

Proposition 3.7. Given a triggering model IG,F , any S ⊆ V , any feedback model and any partial
realization ϕ that is a valid feedback of S, let s = πg(S,ϕ) be the next seed chosen by the greedy
policy. We have

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ {s})

∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S)

∣

∣

∣

]

≥ 1

k

(

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ S∗)

∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S)

∣

∣

∣

]

)

.

Proof. Let S∗ = {s∗1, . . . , s∗k}. By the greedy nature of πg, we have

∀v : E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ {s})

∣

∣

∣

]

≥ E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ {v})

∣

∣

∣

]

,

and this holds for v being any of s∗1, . . . , s
∗
k in particular.
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Let S∗
i = {s∗1, . . . , s∗i } for each i = 1, . . . , k and S∗

0 = ∅, the proposition concludes from the
following calculations

E
φ≃ϕ

[∣

∣

∣
IφG,F (S ∪ {s})

∣

∣

∣

]

− E
φ≃ϕ

[∣

∣

∣
IφG,F (S)

∣

∣

∣

]

≥1

k

k
∑

i=1

(

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ {s∗i })

∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S)

∣

∣

∣

]

)

≥1

k

k
∑

i=1

(

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ S∗

i−1 ∪ {s∗i })
∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ S∗

i−1)
∣

∣

∣

]

)

(Proposition 3.6)

=
1

k

(

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ S∗)

∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S)

∣

∣

∣

]

)

,

where the last equality is by a telescoping sum, by noticing that S∗
i = S∗

i−1∪{s∗i } and S∗ = S∗
k.

Finally, we prove the following proposition which is a more general statement than Theorem 3.5.

Proposition 3.8. For a triggering model IG,F and any ℓ ∈ Z+, we have σf (πg, ℓ) ≥ (1 − (1 −
1/k)ℓ)σ(S∗), and the same holds for the myopic feedback model.

Proof. We will only consider the full-adoption feedback model, as the proof for the myopic feedback
model is identical. We prove this by induction on ℓ. The base step for ℓ = 1 holds trivially by
Proposition 3.7 by considering S = ∅ in the proposition.

Suppose the inequality holds for ℓ = ℓ0. We investigate the expected marginal gain to the global
influence function by selecting the (ℓ0+1)-th seed. For a seed set S ⊆ V with |S| = ℓ0 and a partial
realization ϕ, let P (S,ϕ) be the probability that the policy πg chooses S as the first ℓ0 seeds and

ϕ is the feedback. That is, P (S,ϕ) = Prφ∼F

(

Sf (πg, φ, ℓ0) = S ∧ Φf
G,F,φ(S) = ϕ

)

. The mentioned

expected marginal gain is

σf (πg, ℓ0 + 1)− σf (πg, ℓ0)

=
∑

S,ϕ:|S|=ℓ0

P (S,ϕ)

(

E
φ≃ϕ

[∣

∣

∣
IφG,F (S ∪ {πg(S,ϕ)})

∣

∣

∣

]

− E
φ≃ϕ

[∣

∣

∣
IφG,F (S)

∣

∣

∣

]

)

≥
∑

S,ϕ:|S|=ℓ0

P (S,ϕ) · 1
k

(

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪ S∗)

∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S)

∣

∣

∣

]

)

(Proposition 3.7)

≥
∑

S,ϕ:|S|=ℓ0

P (S,ϕ) · 1
k

(

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S

∗)
∣

∣

∣

]

− E
φ≃ϕ

[
∣

∣

∣
IφG,F (S)

∣

∣

∣

]

)

=
1

k
σ(S∗)− 1

k
σf (πg, ℓ0),

where the last equality follows from the law of total probability.
By rearranging the above inequality and the induction hypothesis,

σf (πg, ℓ0 + 1) ≥ 1

k
σ(S∗) +

k − 1

k
σf (πg, ℓ0)

≥
(

1

k
+

k − 1

k

(

1−
(

1− 1

k

)ℓ0
))

σ(S∗)

=

(

1−
(

1− 1

k

)ℓ0+1
)

σ(S∗),
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which concludes the inductive step.

By taking ℓ = k and noticing that 1− (1−1/k)k > 1−1/e, it is easy to see that Proposition 3.8
implies Theorem 3.5.

Finally, putting Theorem 3.5, Lemma 3.3 and Lemma 3.4 together, Theorem 3.1 can be con-
cluded easily.

Proof of Theorem 3.1. Since ICM and LTM are special cases of triggering models, we have

inf
G,F,k: IG,F is ICM

σf (πg, k)

σ(Sg(k))
≥ inf

G,F,k

σf (πg, k)

σ(Sg(k))

and

inf
G,F,k: IG,F is LTM

σf (πg, k)

σ(Sg(k))
≥ inf

G,F,k

σf (πg, k)

σ(Sg(k))
.

Lemma 3.3 and Lemma 3.4 show that both

inf
G,F,k: IG,F is ICM

σf (πg, k)

σ(Sg(k))
and inf

G,F,k: IG,F is LTM

σf (πg, k)

σ(Sg(k))

are at most 1− 1/e. On the other hand, Theorem 3.5 implies

σf (πg, k)

σ(Sg(k))
≥ σf (πg, k)

σ(S∗)
≥ 1− 1

e

for any triggering model IG,F and any k, where S∗, as usual, denotes the optimal seeds in the
non-adaptive setting.

Putting together, Theorem 3.1 concludes for the full-adoption feedback model. Since all those
inequalities hold for the myopic feedback model as well, Theorem 3.1 concludes for all feedback
models.

4 Supremum of Greedy Adaptivity Gap

In this section, we show that, for the full-adoption feedback model, both the adaptivity gap and the
supremum of the greedy adaptivity gap are unbounded. As a result, in some cases, the adaptive
version of the greedy algorithm can perform significantly better than its non-adaptive counterpart.

Theorem 4.1. The greedy adaptivity gap with full-adoption feedback is unbounded: there exists a
triggering model IG,F and k such that

σf(πg, k)

σ(Sg(k))
= 2Ω(log log |V |/ log log log |V |).

Theorem 4.2. The adaptivity gap for the general triggering model with full-adoption feedback is
infinity.

In Sect. 4.1, we consider a variant of InfMax such that the seeds can only be chosen among
a prescribed vertex set V ⊆ V , where V is specified as an input to the InfMax instance. We
show that, under this setting with LTM, both the adaptivity gap and the supremum of the greedy
adaptivity gap with the full-adoption feedback model are unbounded (Lemma 4.5). Since it is
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common in practice that only a subset of nodes in a network is visible or accessible to the seed-
picker, Lemma 4.5 is also interesting on its own. In Sect. 4.2, we show that how Lemma 4.5 can be
used to prove Theorem 4.1 and Theorem 4.2. Notice that Theorem 4.1 and Theorem 4.2 hold for
the standard InfMax setting without a prescribed set of seed candidates, but we do not know if
they hold for LTM (instead, they are for the more general triggering model).

We first present the following lemma revealing a special additive property for LTM, which will
be used later.

Lemma 4.3. Suppose IG,F is LTM. If U1, U2 ⊆ V with U1 ∩ U2 = ∅ satisfy that there is no path
from any vertices in U1 to any vertices in U2 and vice versa, then σ(U1) + σ(U2) = σ(U1 ∪ U2).

Proof. For any seed set S ⊆ V , σ(S) can be written as follows:

σ(S) =
∑

φ

Pr(φ is sampled) ·
∣

∣

∣
IφG,F (S)

∣

∣

∣
. (2)

For U1 and U2 in the lemma statement, since each vertex can only have at most one incoming
live edge (in Definition 2.3, each Tv has size at most 1), under any realization φ, each vertex
v ∈ V \ (U1 ∪ U2) that is reachable from vertices in U1 ∪ U2 is reachable from either vertices in U1

or vertices in U2, but not both. Therefore, |IφG,F (U1)|+ |IφG,F (U2)| = |IφG,F (U1 ∪U2)| for any φ, and
the lemma follows from considering the decomposition of σ(U1) and σ(U2) according to (2).

4.1 On LTM with Prescribed Seed Candidates

Definition 4.4. The influence maximization problem with prescribed seed candidates is an opti-
mization problem which takes as inputs G = (V,E), F , k ∈ Z+, and V ⊆ V , and outputs a seed set
S ⊆ V that maximizes the expected total number of infections: S ∈ argmaxS⊆V :|S|≤k σ(S). The
adaptive influence maximization problem with prescribed seed candidates has the same definition as
it is in Definition 2.8, with the exception that the range of the function π is now V , and Π is the
set of all such policies.

Lemma 4.5. For InfMax with prescribed seed candidates with LTM and full-adoption feedback, the
adaptivity gap is infinity, and the greedy adaptivity gap is 2Ω(log |V |/ log log |V |).

Proof. For d,W ∈ Z+ with d being sufficiently large and W ≫ dd+1, we construct the following
(adaptive) InfMax instance with prescribed seed candidates:

• the edge-weighted graph G = (V,E,w) consists of an (d + 1)-level directed full d-ary tree
with the root node being the sink (i.e., an in-arborescence) and W vertices each of which is
connected from the root node of the tree; the weight of each edge in the tree is 1/d, and the
weight of each edge connecting from the root to those W vertices is 1;

• the number of seeds is given by k = 2(d+1
2 )d;

• the prescribed set for seed candidates V is the set of all the leaves in the tree.

Since the leaves are not reachable from one to another, Lemma 4.3 indicates that choosing any
k vertices among V , i.e., the leaves, infects the same number of vertices in expectation. It is easy
to see that a single seed among the leaves will infect the root node with probability 1/dd, and those
W vertices will be infected with probability 1 if the root of the tree is infected. Thus, for any seed
set S ⊆ V , by assuming all vertices in the tree are infected (in the sake of finding an upper bound
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for σ(S)), we have σ(S) ≤ 1
dd

· |S| ·W +
∑d

i=0 d
i < |S|W

dd
+ dd+1. This gives an upper bound for the

performance of both the non-adaptive greedy algorithm and the non-adaptive optimal seed set.
Now, we consider the greedy adaptive policy. If the root is not infected, there always exists

a path from a certain leaf to the root such that all vertices on the path are not infected. This
is because, if all children of an internal node w are infected, w will be infected with probability
1 (as fw = d × 1

d = 1 which will always be no smaller than θw). In other words, if an internal
node is uninfected, at least one of its children is uninfected. It is easy to see that, before the root
is infected, the greedy adaptive policy will always choose a leaf such that all vertices on the path
between the leaf and the root are uninfected.

Next, we evaluate the expected number of seeds required to infect the root, under the greedy
adaptive policy. Suppose the tree only has two levels (i.e., a star). The number of seeds among
the leaves required to infect the root is a random variable with uniform distribution on {1, . . . , d},
with expectation d+1

2 . By induction on the number of levels of the tree, with a d-level tree as it is

in our case, the expected number of seeds required to infect the root is (d+1
2 )d, which equals to k

2 .
By Markov’s inequality, the k seeds chosen according to the greedy adaptive policy will infect the
root with probability at least 1/2. Therefore, σf(πg, k) ≥ 1

2W , and the optimal adaptive policy can
only be better: maxπ∈Π σf(π, k) ≥ σf(πg, k) ≥ 1

2W .
Putting together, both the adaptivity gap and the supremum of the greedy adaptivity gap is at

least
1
2W

kW
dd

+ dd+1
=

1
2W

1
2d−1 (1 +

1
d )

dW + dd+1· = Ω
(

2d
)

,

if setting W = dd+10 ≫ dd+1. The lemma concludes by noticing d = Ω( log |V |
log log |V |) (in particular,

|V | = W + o(W ) = dd+10 + o(dd+10), so log |V | = d log d+ o(d log d), log log |V | = log d+ o(log d),

and d = Ω( log |V |
log log |V |) as claimed).

4.2 Proof of Theorem 4.1, 4.2

To prove Theorem 4.1 and Theorem 4.2, we construct an InfMax instance with a special triggering
model IG,F which is a combination of ICM and LTM.

Definition 4.6. The mixture of ICM and LTM is a triggering model IG,F where G = (V,E,w) is an
edge-weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E and each vertex v is labelled either
IC or LT such that Tv is sampled according to Fv described in Definition 2.2 if v is labelled IC

and Tv is sampled according to Fv described in Definition 2.3 if v is labelled LT. In addition, each
vertex v labelled L satisfies

∑

u∈Γ(v) w(u, v) ≤ 1.

To conclude Theorem 4.1 and Theorem 4.2, we construct an edge-weighted graph G = (V,E,w)
on which the greedy adaptive policy significantly outperforms the non-adaptive greedy algorithm.
Let M ≫ dd+1 be a large integer. We reuse the graph with a tree and W vertices in the proof of
Lemma 4.5. We create M such graphs and name them T1, . . . , TM . Let L = dd be the number
of leaves in each Ti. Let ZL = {1, . . . , L} and ZM

L be the set of all M -dimensional vectors whose
entries are from ZL. For each z = (z1, . . . , zM ) ∈ ZM

L , create a vertex az and create a directed edge
from az to the zi-th leaf of the tree Ti for each i = 1, . . . ,M . The weight of each such edge is 1.
Let A = {az | z ∈ ZM

L }. Notice that |A| = LM and each az ∈ A is connected to M vertices from
T1, . . . , TM respectively. The leaves of T1, . . . , TM are labelled as IC, and the remaining vertices
are labelled as LT. Finally, set k = 2(d+1

2 )d as before.
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Due to that M is large, it is more beneficial to seed a vertex in A than a vertex elsewhere. In
particular, seeding a root in certain Ti infects W vertices, while seeding a vertex in A will infects
M · (1d)dW ≫ W vertices in expectation.

It is easy to see that, in the non-adaptive setting, the optimal seeding strategy is to choose
k seeds from A such that they do not share any out-neighbors, in which case the k chosen seeds
will cause the infection of exactly k leaves in each Ti. This is also what the non-adaptive greedy
algorithm will do. As before, to find an upper bound for any seed set S with |S| = k, we assume

that all vertices in each Ti are infected, and we have σ(S) ≤ M
(

k · 1
dd
W +

∑d
i=0 d

i
)

.

For the similar reason as it is in the proof of Lemma 4.5, the greedy adaptive policy would
iteratively pick a seed az ∈ A such that, for each i = 1, . . . ,M , if the root in Ti is not yet infected,
the path from zi-th leaf to the root in Ti contains no infected vertices. By the same analysis in
the proof of Lemma 4.5, by choosing k seeds among A as described above, which is equivalent
as choosing k leaves in each of T1, . . . , TM simultaneously, the root in each Ti is infected with
probability at least 1

2 . Therefore, the expected total number of infected vertices is at least M · 12W .
It may seem problematic that the greedy adaptive policy may start to seed the roots among

T1, . . . , TM when it sees that there are already a lot of infected roots (so seeding a root is better
than seed a vertex in A). However, we can always choose M to be large enough such that, after
choosing k seeds adaptively from A, the total number of uninfected roots is still significantly more
than dd with high probability, so that seeding a vertex from A is still more beneficial. This is always
possible: supposing p is the probability that a root is infected with k adaptive seeds from A, we
only need to choose M such that M · (1− p) ≫ dd.

Putting together as before, both the adaptivity gap and the supremum of the greedy adaptivity
gap is at least

M · 1
2W

M(kW
dd

+ dd+1)
=

1
2W

1
2d−1 (1 +

1
d)

dW + dd+1· = Ω
(

2d
)

,

if fixing W = dd+10 ≫ dd+1. Theorem 4.2 concludes by letting d → ∞. To conclude Theorem 4.1,
we need to show that d = Ω(log log |V |/ log log log |V |). To see this, we set M = dd+10 which
is sufficiently large for our purpose. Since we have L = dd, we have |V | = LM + o(LM ) =

dd
d+11

+ o(dd
d+11

), which implies d = Ω(log log |V |/ log log log |V |).

5 A Variant of Greedy Adaptive Policy

Although we have seen that the adaptive version of the greedy algorithm can perform worse than its
non-adaptive counterpart, in general, we would still recommend the use of it as long as it is feasible,
as it can also perform significantly better than the non-adaptive greedy algorithm (Theorem 4.1)
while never being too bad (Theorem 3.5). As we remarked, the adaptivity may be harmful because
exploiting the feedback may make the seed-picker too myopic. In this section, we propose a less
aggressive risk-free version of the greedy adaptive policy, πg−, in that it balances between the
exploitation of the feedback and the focus on the average in the conventional non-adaptive greedy
algorithm.

First, we apply the non-adaptive greedy algorithm with |V | seeds to obtain an order L on all
vertices. Then for any S ⊆ V and any partial realization ϕ, πg−(S,ϕ) is defined to be the first
vertex v in L that is not known to be infected. Formally, v is the first vertex in L that are not
reachable from S when removing all edges e with ϕ(e) ∈ {B, U}. This finishes the description of the
policy.

17



This adaptive policy is always no worse than the non-adaptive greedy algorithm, as it is easy to
see that those seeds chosen by πg are either seeded or infected by previously selected seeds in πg−.

However, πg− can sometimes be conservative. It is possible that πg− has the same performance
as the non-adaptive greedy algorithm, but πg is much better. Especially, when there is no path
between any two vertices among the first k vertices in L, πg− will make the same choice as the
non-adaptive greedy algorithm. The InfMax instance in Sect. 4.2 is an example of this.

We have seen that πg− sometimes performs better than πg (e.g., in those instances constructed
in the proofs of Lemma 3.2 and Lemma 3.3) and sometimes performs worse than the πg (e.g., in
the instance constructed in Sect. 4.2). Therefore, given a particular InfMax instance, for deciding
which of πg− and πg to be used (we should never consider the non-adaptive greedy algorithm if
adaptivity is available, as it is always weakly worse than πg−), we recommend a comparison of the
two policies by simulations. Notice that the seed-picker can randomly sample a realization φ and
simulate the feedback the policy will receive. Thus, given IG,F , both πg− and πg can be estimated
by taking an average over the numbers of infected vertices in a large number of simulations.

6 Conclusion and Open Problems

We have seen that the infimum of the greedy adaptivity gap is exactly (1 − 1/e) for ICM, LTM,
and general triggering models with both the full-adoption feedback model and the myopic feedback
model. We have also seen that the supremum of this gap is infinity for the full-adoption feedback
model. One natural open problem is to find the supremum of the greedy adaptivity gap for the
myopic feedback model. Another natural open problem is to find the supremum of the greedy
adaptivity gap for the more specific ICM and LTM.

The greedy adaptivity gap studied in this paper is closely related to the adaptivity gap studied
in the past. Since the non-adaptive greedy algorithm is always a (1 − 1/e)-approximation of the
non-adaptive optimal solution, a constant adaptivity gap implies a constant greedy adaptivity gap.
For example, the adaptivity gap for ICM with myopic feedback is at most 4 [26], so the greedy
adaptivity gap in the same setting is at most 4

1−1/e . In addition, the greedy adaptive policy is

known to achieve a (1 − 1/e)-approximation to the adaptive optimal solution for ICM with full-
adoption feedback [14], so the adaptivity gap and the greedy adaptivity gap could either be both
constant or both unbounded for ICM with full-adoption feedback model, but it remains open which
case is true. The adaptivity gap for ICM with full-adoption feedback, as well as the adaptivity gap
for LTM with both feedback models, are all important open problems. We believe these problems
can be studied together with the greedy adaptivity gap.
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A Some Intuitions for ICM and LTM

In the original definition, ICM is defined such that each vertex u attempts only once to infect each
of its not-yet-infected out-neighbor v with probability (u, v).

Definition A.1. The independent cascade model ICG is defined by a directed edge-weighted graph
G = (V,E,w) such that w(u, v) ≤ 1 for each (u, v) ∈ E. On input seed set S ⊆ V , ICG(S) outputs
a set of infected vertices as follows:

1. Initially, only vertices in S are infected.

2. In each subsequent round, each vertex u infected in the previous round infects each (not yet
infected) out-neighbor v with probability w(u, v) independently.

3. After a round where there is no additional infected vertices, ICG(S) outputs the set of infected
vertices.

It is straightforward to see that this definition is equivalent to Definition 2.2.
The basic idea behind the original LTM is that the influence from the in-neighbors of a vertex is

additive.

Definition A.2. The linear threshold model LTG is defined by a directed edge-weighted graph
G = (V,E,w) such that

∑

u:u∈Γ(v) w(u, v) ≤ 1 for each v ∈ V . On input seed set S ⊆ V , LTG(S)
outputs a set of infected vertices as follows:

1. Initially, only vertices in S are infected, and for each vertex v a threshold θv is sampled
uniformly at random from [0, 1] independently.

2. In each subsequent round, a vertex v becomes infected if
∑

u:u∈Γ(v) and u is infected w(u, v) ≥ θv.

3. After an round where there is no additional infected vertices, LTG(S) outputs the set of
infected vertices.

Kempe et al. [19] showed that the definition above is equivalent to Definition 2.3. For an intuition
of this, consider a not-yet-infected vertex v and a set of its infected neighbors INv ⊆ Γ(v). v will
be infected by vertices in INv with probability

∑

u:u∈INv
w(u, v), as Pr

(

θv ≤∑u:u∈INv
w(u, v)

)

=
∑

u:u∈INv
w(u, v). In the case where v becomes infected, we can attribute its infection to exactly

one of its infected neighbors. The infection will be attributed to neighboring infected vertex u with
probability equal to w(u, v) (in which case Tv = {u}). Overall, the probability that v includes an
incoming edge from {(u, v) : u ∈ INv} is exactly

∑

u:u∈INv
w(u, v).

B On General Threshold Model

In this section, we show that all our results in this paper hold for submodular general threshold
model, a model that is more general than the triggering model. In Sect. B.1, we define the general
threshold model, and we define the two feedback models, the full-adoption and the myopic, based
on the general threshold model. In Sect. B.2, we justify that all our results in this paper hold for
submodular general threshold model.
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B.1 General Threshold Model and Feedback

Definition B.1 (Kempe et al. [19]). The general threshold model, IG,F , is defined by a graph
G = (V,E) and for each vertex v a monotone local influence function fv : {0, 1}|Γ(v)| → [0, 1] with
fv(∅) = 0. Let F = {fv | v ∈ V }.

On an input seed set S ⊆ V , IG,F (S) outputs a set of infected vertices as follows:
1. Initially, only vertices in S are infected, and for each vertex v the threshold θv is sampled

uniformly at random from the interval (0, 1] independently.
2. In each subsequent round, a vertex v becomes infected if the influence of its infected in-

neighbors, INv ⊆ Γ(v), exceeds its threshold: fv(INv) ≥ θv.
3. After a round where no additional vertices are infected, the set of infected vertices is the

output.

IG,F in Definition B.1 can be viewed as a random function IG,F : {0, 1}|V | → {0, 1}|V |. In
addition, if the thresholds of all the vertices are fixed, this function becomes deterministic. Cor-
respondingly, we define a realization of a graph G = (V,E) as a function φ : V → (0, 1] which

encodes the thresholds of all vertices. Let IφG,F : {0, 1}|V | → {0, 1}|V | be the deterministic function
corresponding to the general threshold model IG,F with vertices’ thresholds following realization
φ. We will interchangeably consider φ as a function defined above or a |V | dimensional vector in
(0, 1]|V |, and we write φ ∼ (0, 1]|V | to mean a random realization is sampled such that each θv is
sampled uniformly at random and independently as it is in Definition B.1.

Like the triggering model, the general threshold model also captures the independent cascade
and linear threshold models.

• ICM is a special case of the general threshold model IG,F where G = (V,E,w) is an edge-
weighted graph with w(u, v) ∈ (0, 1] for each (u, v) ∈ E and fv(INv) = 1−∏u∈INv

(1−w(u, v))
for each fv ∈ F .

• LTM is a special case of the general threshold model IG,F where G = (V,E,w) is an edge-
weighted graph with w(u, v) > 0 for each (u, v) ∈ E and

∑

u∈Γ(v) w(u, v) ≤ 1 for each v ∈ V
and fv(INv) =

∑

u∈INv
w(u, v) for each fv ∈ F .

Given a general threshold model IG,F , the global influence function is then defined as σG,F (S) =

Eφ∼(0,1]|V | [|IφG,F (S)|]. Mossel and Roch [23] showed that σ(·) is monotone and submodular if each
fv(·) is monotone and submodular. We normally say that a general threshold model IG,F is sub-
modular if each fv ∈ F is submodular. Notice that this implies σ(·) is submodular.

In the remaining part of this section, we define the full-adoption feedback model and the myopic
feedback model corresponding to the general threshold model.

When the seed-picker sees that a vertex v is not infected (v may be a vertex adjacent to IφG,F (S)
in the full-adoption feedback model, or a vertex adjacent to S in the myopic feedback model), the
seed-picker has certain partial information about v’s threshold. Specifically, let INv be v’s infected
in-neighbors that are observed by the seed-picker. By seeing that v is not infected, the seed-picker
knows that the threshold of v is in the range (fv(INv), 1], and the posterior distribution of θv is
the uniform distribution on this range.

Let the level of a vertex v, denoted by ov, be a value which either equals a character X indicating
that it is infected, or a real value ϑv ∈ [0, 1] indicating that θv ∈ (ϑv, 1]. Let O = {X}∪ [0, 1] be the
space of all possible levels. A partial realization ϕ is a function specifying a level for each vertex:
ϕ : V → O. We say that a partial realization ϕ is consistent with the full realization φ, denoted by
φ ≃ ϕ, if φ(v) > ϕ(v) for any v ∈ V such that ϕ(v) 6= X.
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Definition B.2. Given a general threshold model IG=(V,E),F with a realization φ, the full-adoption

feedback is a function Φf
G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(v) = X for each v ∈ IφG,F (S), and

• ϕ(v) = fv(I
φ
G,F (S) ∩ Γ(v)) for each v /∈ IφG,F (S).

Definition B.3. Given a general threshold model IG=(V,E),F with a realization φ, the myopic
feedback is a function Φm

G,F,φ mapping a seed set S ⊆ V to a partial realization ϕ such that

• ϕ(v) = X for each v ∈ S, and

• for each v /∈ S, ϕ(v) = X if fv(S∩Γ(v)) ≥ φ(v), and ϕ(v) = fv(S∩Γ(v)) if fv(S∩Γ(v)) < φ(v).

Notice that, in both definitions above, a vertex v that does not have any infected neighbor (i.e.,

v /∈ S such that IφG,F (S) ∩ Γ(v) = ∅ for the full-adoption feedback model or S ∩ Γ(v) = ∅ for the
myopic feedback model) always satisfies ϕ(v) = 0, as fv(∅) = 0 by Definition 2.1.

After properly defining the two feedback models, the definition of the adaptive policy π, as well
as the definitions of the functions S f(·, ·, ·),Sm(·, ·, ·), σf(·, ·), σm(·, ·), are exactly the same as they
are in Sect. 2.2. The definitions of the adaptivity gap and the greedy adaptivity gap are also the
same as they are in Sect. 2.3.

B.2 Extending of Our Results to General Threshold Model

We will show in this section that all our results can be extended to the submodular general threshold
model. Recall that a general threshold model is submodular means that all the local influence
functions fv’s are submodular. In this section, whenever we write IG,F , we refer to the general
threshold model in Definition B.1, not the triggering model in Definition 2.1.

B.2.1 Infimum of Greedy Adaptivity Gap

Theorem 3.1 is extended as follows.

Theorem B.4. For the full-adoption feedback model,

inf
G,F,k: IG,F is ICM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k: IG,F is LTM

σf(πg, k)

σ(Sg(k))
= inf

G,F,k: IG,F is submodular

σf(πg, k)

σ(Sg(k))
= 1− 1

e
.

The same result holds for the myopic feedback model.

Recall that Theorem 3.1 can be easily implied by Lemma 3.3, Lemma 3.4 and Theorem 3.5.
Since Lemma 3.3 and Lemma 3.4 are for specific models ICM and LTM which are compatible with
both the triggering model and the general threshold model, their validity here is clear. Following
the same arguments, Theorem B.4 can be implied by Lemma 3.3, Lemma 3.4 and the following
theorem which is the counterpart to Theorem 3.5.

Theorem B.5. If IG,F is a submodular general threshold model, then we have both

σf(πg, k) ≥
(

1− 1

e

)

max
S⊆V,|S|≤k

σ(S) and σm(πg, k) ≥
(

1− 1

e

)

max
S⊆V,|S|≤k

σ(S).
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Similar to the proof of Theorem 3.5, Theorem B.5 can be proved by showing the three propo-
sitions: Proposition 3.6, Proposition 3.7 and Proposition 3.8. It is straightforward to check that
Proposition 3.7 and Proposition 3.8 hold for the general threshold model with exactly the same
proofs. Now, it remains to extend Proposition 3.6 to the general threshold model, which is restated
and proved below.

Proposition B.6. Given a submodular general threshold model IG,F , any S ⊆ V , any feedback
model (either full-adoption or myopic) and any partial realization ϕ that is a valid feedback of S

(i.e., ∃φ : ϕ = Φf
G,F,φ(S) or ∃φ : ϕ = Φm

G,F,φ(S), depending on the feedback model considered), the

function T : {0, 1}|V | → R≥0 defined as T (X) = Eφ≃ϕ[|IφG,F (S ∪X)|] is submodular.

Proof. Fix a feedback model, S ⊆ V and ϕ that is a valid feedback of S. Let T = {v | ϕ(v) = X}
be the set of infected vertices indicated by the feedback of S. We consider a new general threshold
model IG′,F ′ defined as follows:

• G′ is obtained by removing vertices in T from G (and the edges connecting from/to vertices
in T are also removed);

• For any v ∈ V ′ = V \ T , Γ(v) ∩ T is the set of in-neighbors of v that are removed. Define

f ′
v(Y ) = fv((Γ(v)∩T )∪Y )−ϕ(v)

1−ϕ(v) for each subset Y of v’s in-neighbors in the new graph G′: Y ⊆
Γ(v) ∩ V ′.

Notice that f ′
v is a valid local influence function. f ′

v is clearly monotone. For each v ∈ V ′, we
have ϕ(v) = fv(Γ(v) ∩ T ), as this is exactly the feedback received from the fact that v has not yet
infected. It is then easy to see that f ′

v is always non-negative and f ′
v(∅) = 0.

A simple coupling argument can show that

E
φ≃ϕ

[
∣

∣

∣
IφG,F (S ∪X)

∣

∣

∣

]

= σG′,F ′(X \ T ) + |T |. (3)

To define the coupling, for each v ∈ V ′, the threshold of v in G, θv, is coupled with the threshold
of v in G′ as θ′v = θv−ϕ(v)

1−ϕ(v) . This is a valid coupling: by φ ≃ ϕ, we know that θv is sampled

uniformly at random from (ϕ(v), 1], which indicates that the marginal distribution of θ′v is the
uniform distribution on (0, 1], which makes IG′,F ′ a valid general threshold model.

Under this coupling, on the vertices V ′, the cascade in G with seeds S∪X and partial realization
ϕ is identical to the cascade in G′ with seeds X \T . To see this, consider an arbitrary vertex v ∈ V ′

and let INv and IN ′
v be v’s infected neighbors in G and G′ respectively. For induction hypothesis,

suppose the two cascade processes before v’s infection are identical. We have INv = IN ′
v∪(Γ(v)∩T )

and IN ′
v ∩ (Γ(v)∩T ) = ∅. It is easy to see from our construction that v is infected in G if and only

if v is infected in G′:

fv(INv) ≥ θv ⇔ f ′
v(IN

′
v) =

fv(INv)− ϕ(v)

1− ϕ(v)
≥ θ′v.

This proves Eqn. (3).
Finally, since each fv(·) is assumed to be submodular, it is easy to see that each f ′

v(·) is
submodular by our definition. Thus, IG′,F ′ is a submodular model. This, combined with Eqn. (3),
proves the proposition.
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B.2.2 Supremum of Greedy Adaptivity Gap

All the results in Sect. 4 about the supremum of the greedy adaptivity gap can be extended easily to
the submodular general threshold model. In particular, Lemma 4.3 and Lemma 4.5 are under LTM,
which is compatible with the submodular general threshold model. Theorem 4.1 and Theorem 4.2
are proved by providing an example with a diffusion model that is a combination of ICM and LTM,
and the diffusion model constructed in Definition 4.6 can be easily described in the formulation
of the general threshold model, since both ICM and LTM can be described in the general threshold
model.
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