
ar
X

iv
:1

90
6.

09
55

7v
2

 [
cs

.L
G

]
 6

 D
ec

 2
01

9

Posterior-Guided Neural Architecture Search

Yizhou Zhou,1∗ Xiaoyan Sun,2 Chong Luo,2 Zheng-Jun Zha,1† Wenjun Zeng2

1University of Science Technology of China 2Microsoft Research Asia
zyz0205@mail.ustc.edu.cn zhazj@ustc.edu.cn {xysun, cluo, wezeng}@microsoft.com

Abstract

The emergence of neural architecture search (NAS) has
greatly advanced the research on network design. Recent
proposals such as gradient-based methods or one-shot ap-
proaches significantly boost the efficiency of NAS. In this
paper, we formulate the NAS problem from a Bayesian per-
spective. We propose explicitly estimating the joint posterior
distribution over pairs of network architecture and weights.
Accordingly, a hybrid network representation is presented
which enables us to leverage the Variational Dropout so that
the approximation of the posterior distribution becomes fully
gradient-based and highly efficient. A posterior-guided sam-
pling method is then presented to sample architecture candi-
dates and directly make evaluations. As a Bayesian approach,
our posterior-guided NAS (PGNAS) avoids tuning a number
of hyper-parameters and enables a very effective architecture
sampling in posterior probability space. Interestingly, it also
leads to a deeper insight into the weight sharing used in the
one-shot NAS and naturally alleviates the mismatch between
the sampled architecture and weights caused by the weight
sharing. We validate our PGNAS method on the fundamen-
tal image classification task. Results on Cifar-10, Cifar-100
and ImageNet show that PGNAS achieves a good trade-off
between precision and speed of search among NAS methods.
For example, it takes 11 GPU days to search a very com-
petitive architecture with 1.98% and 14.28% test errors on
Cifar10 and Cifar100, respectively.

1 Introduction

Neural architecture search (NAS), which automates the de-
sign of artificial neural networks (ANN), has received in-
creasing attention due to its ability of finding ANNs with
similar or even better performance than manually designed
ones. Essentially, NAS is a bi-level optimization problem.
Given an neural architecture α which belongs to a pre-
defined search space G, the lower-level objective optimizes
the weight wα of the architecture α as

w∗
α = argminwα

L(M(α,wα);Dt), (1)

∗This work was performed while Yizhou Zhou was an intern
with Microsoft Research Asia.

†Corresponding author.
Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

where L is a loss criterion that measures the performance
of network M(α,wα) with architecture α and weight wα

on the training dataset Dt; whereas the upper-level objective
optimizes the network architecture α with the weight w∗

α

that has been optimized by the lower-level task as

α∗ = argminα∈G L(M(α,w∗
α);Dv), (2)

on the validation dataset Dv . To solve this bi-level problem,
different approaches have been proposed, e.g. evolutionary-
based methods (Liu et al. 2017; Real et al. 2018), rein-
forcement learning based schemes (Baker et al. 2016;
Zoph and Le 2016; Zoph et al. 2018; Tan et al. 2018;
Zhong et al. 2018; Zela et al. 2018; Real et al. 2018;
Baker et al. 2017; Swersky, Snoek, and Adams 2014;
Domhan, Springenberg, and Hutter 2015; Klein et al. 2016;
Liu et al. 2018) or gradient-based algorithms
(Liu, Simonyan, and Yang 2018; Cai, Zhu, and Han 2018;
Brock et al. 2017; Xie et al. 2018). However, most of these
methods suffer from high computational complexity (often
in the orders of thousands of GPU days) (Liu et al. 2017)
(Real et al. 2018) (Baker et al. 2016) (Zoph and Le 2016)
(Zoph et al. 2018), or lack of convergence guarantee
(Cai, Zhu, and Han 2018; Liu, Simonyan, and Yang 2018;
Xie et al. 2018).

Instead of directly tackling the bi-level opti-
mization problem, some attempts (Wu et al. 2018;
Saxena and Verbeek 2016; Shin, Packer, and Song 2018;
Xie et al. 2018) relax the discrete search space G to be con-
tinuous. Given one continuous relaxation Gr of topology r,
the weight and architecture can be jointly optimized by the
single objective function

r∗, w∗ = argminr,w L(M(Gr , w);Dt). (3)

Then the optimal architecture α∗ is derived by discretizing
the continuous one Gr∗ . These methods greatly simplify the
optimization problem and enable end-to-end training. How-
ever, since the validation set Dv is excluded in Eq. 3, the
search results are usually biased on training datasets.

More recent NAS methods tend to reduce the compu-
tational complexity by decoupling the bi-level optimiza-
tion problem into a sequential one (Bender et al. 2018;
Brock et al. 2017; Guo et al. 2019). Specifically, the search

http://arxiv.org/abs/1906.09557v2

space G here is defined by an over-parameterized super-
network (one-shot model) with architecture αo. Then the
one-shot NAS starts with optimizing the weights wαo

of the
super-network αo by Eq. 1, resulting w∗

αo
as

w∗
αo

= argminwαo
L(M(αo, wαo

);Dt). (4)

After that, a number of sub-architecturesα are sampled from
αo. Then the best-performing one is selected by

α∗ = argminα⊆αo
L(M(α,w∗

α);Dv), (5)

where w∗
α is inherited from w∗

αo
. We notice that one core

assumption in the one-shot NAS method is that the best-
performing sub-network shares weights with the optimal
super-network. Thus the sampled sub-networks do not need
to be re-trained in the searching process. This assumption,
on the one hand, greatly boosts the efficiency of NAS; on
the other, it could lead to mismatches between weights and
architectures of sampled sub-networks, which jeopardizes
the following ranking results (Xie et al. 2018). More clues
can be found that most one-shot methods rely on fine-tuning
to further improve the performance of the found model. In
addition, the sampling process in current one-shot NAS is
much less explored which has a big impact on the perfor-
mance as demonstrated later in our study (Table 3).

In this paper, we propose modeling the NAS problem
from a Bayesian perspective and accordingly present a new
NAS strategy, i.e. posterior-guided NAS (PGNAS). In PG-
NAS, given a search space G, we estimate the posterior dis-
tribution p(α,w | Dt) (α ∈ G) over pairs of architecture
and weight (α,w). Then optimal architecture is searched by

α∗ = argminα,w∼p(α,w|Dt) L(M(α,w);Dv). (6)

However, since the posterior distribution p(α,w | Dt) is
intractable, we approximate it by a variational distribution
qθ(α,w) as

θ∗ = argminθ L(qθ(α,w), p(α,w | Dt)), (7)

where θ denotes the variational parameters and L measures
the distance between two distributions. Still, finding θ∗ is not
trivial. Therefore, we further propose a hybrid network rep-
resentation to facilitate an end-to-end trainable solution. In
short, our PGNAS manages to leverage the training dataset
to estimate the joint posterior distribution over network ar-
chitecture and weight, based on which an efficient and effec-
tive sampling in posterior probability space is enabled.

We recently noticed that there is a parallel work
(Zhou et al. 2019) that employs the sparse Bayesian learn-
ing (SBL) (Tipping 2001) in NAS. This work focuses on
tackling two problems in the one-shot NAS, i.e., neglect of
dependencies between nodes and problematic magnitude-
based operation pruning. It encodes the node dependency
logic into the prior distribution of the architecture and ex-
ploit the SBL to obtain the most sparse solution for the prior
distribution. The entropy of the derived prior distribution
with a pre-defined threshold is then used as the criterion to
prune operations. Differently, we directly formulate NAS in
a posterior probability space, and sample pairs of architec-
ture and weights in this space to search for good architec-
tures.

In summary, the main contributions of this work are:

• We convert NAS to a distribution construction problem.
We formulate the NAS problem by Bayesian theory and
propose to estimate the joint posterior distribution of
pairs of network architecture and weights. It thus enables
a very efficient search process in the probability space
through a posterior-guided sampling. The presented PG-
NAS achieves a good trade-off between performance and
speed of search, e.g. it speeds up the search process by
20X compared with the second best while achieving the
best performance with 1.98% test error on Cifar10.

• An end-to-end trainable solution is proposed to ap-
proximate the joint posterior distribution on architecture
and weights. In particular, a hybrid network represen-
tation is presented to facilitate the Variational Dropout
(Gal and Ghahramani 2016)-based solution, which makes
the approximation fully gradient-based and highly effi-
cient.

• Our PGNAS models and samples architecture and
weights jointly. It thus reduces the mismatch between the
architecture and weights caused by weight sharing in the
one-shot NAS and improves the reliability of evaluation
for the sampled network. In our PGNAS, the sampled
weights can be adopted directly by the searched architec-
ture to achieve high performance without fine-tuning.

• We find that the weight sharing in our PGNAS can be
viewed as a re-parametrization that enables us to esti-
mate the posterior distribution via end-to-end optimiza-
tion. This finding may help in better understanding of
weight sharing that is well-accepted in the one-shot NAS.

2 PGNAS

In this section, we first formulate the target problem in our
PGNAS via the joint posterior distribution. Then an end-to-
end trainable solution is presented to approximate the pos-
terior distribution. At last, an efficient sampling and ranking
scheme is described to facilitate the search process.

In the following, we use ws
l ∈ RKl×Hl×s×s to denote the

convolution weight matrix in layer l with spatial kernel size
s, where Kl and Hl denote the number of input and output
channels in layer l, respectively. ws

l,k ∈ R1×Hl×s×s denotes

the sliced kernel operated on the kth (1 ≤ k ≤ Kl) in-
put channel dimension. w = {ws

l,k} presents weights of the

whole super-network. As deriving an architectureα is equiv-
alent to selecting a set of convolution kernels, we introduce
a set of random variables α = {αs

l,k} (αs
l,k ∈ {0, 1}) to

indicates deactivating or activating convolution kernel ws
l,k

by setting the corresponding α
s
l,k to 1 or 0, respectively. We

use boldface for random variables later on.

2.1 Problem Formulation

As defined in Eq. 6 and 7, in order to search a good archi-
tecture from the posterior probability space, we need to con-
struct a joint posterior distribution over α and w which is
usually very hard to obtain. However, we notice it is not nec-
essary to compute it explicitly as deactivating or activating a
convolution kernel is also equivalent to multiplying a binary

mask to the kernel. Hence, we combine the two random vari-
ables into a new one ϕ = {ϕs

l,k}, where ϕs
l,k = w

s
l,k ·α

s
l,k.

Now, the key problem in our PGNAS becomes the approxi-
mation of the posterior distribution over the hybrid network
representation ϕ. Mathematically,

p(ϕ | X,Y) =
p(Y | X,ϕ)p(ϕ)∫

ϕ
p(Y | X,ϕ)

, (8)

where X = {ximidi = 1, ..., N} and Y = {yi | i =
1, ..., N} denote N training samples and labels, respec-
tively. p(Y | X,ϕ) is the likelihood that can be inferred by∏N

i=1 p(yi | f
ϕ(xi)), where fϕ denotes a sub-network de-

fined by hybrid representation ϕ. p(ϕ) is the a priori distri-
bution of hybrid representation ϕ. Because the marginalized
likelihood

∫
ϕ
p(Y | X,ϕ) in Eq. 8 is intractable, we use a

variational distribution qθ(ϕ) to approximate Eq. 8 and re-
formulate our target problem as

θ∗ = argminθ Ld(qθ(ϕ), p(ϕ | Dt)),

α∗ = argminϕ∼qθ∗ (ϕ)L(ϕ;Dv).
(9)

Here we choose KL divergence and accuracy to instantiate
Ld and L, respectively.

2.2 Posterior Distribution Approximation

To solve Eq. 9, we employ Variational Inference(VI) which
minimizes the negative Evidence Lower Bound (ELBO)

LV I(θ) : = KL(qθ(ϕ) || p(ϕ))

−
N∑

i=1

∫
qθ(ϕ) log p(yi | f

ϕ(xi))dϕ,
(10)

Here we propose solving Eq. 10 by the network friendly
Variational Dropout.

Approximation by Network Training Due to the
hybrid network representation, we can use the re-
parametrization trick (Kingma and Welling 2013) as in
(Gal 2016; Gal and Ghahramani 2016) to solve Eq. 10. We
choose a deterministic and differentiable transformation
function g(·, ·) that re-parameterizes the qθ(ϕ) as ϕ =
g(θ, ǫ), where ǫ ∼ p(ǫ) is a parameter-free distribution.
Take a uni-variate Gaussian distribution x ∼ qθ(x) =
N (µ, σ) as an example, its re-parametrization can be x =
g(θ, ǫ) = µ + σǫ with ǫ ∼ N (0, 1), where µ and σ
are the variational parameters θ. Gal et.al. in (Gal 2016;
Gal and Ghahramani 2016) show that when the network
weight is re-parameterized with

w
s
l,k = ms

l,k · z
s
l,k, where z

s
l,k ∼ Bernoulli(p̃sl), (11)

the function draw w.r.t. variational distribution over net-
work weights w can be efficiently implemented via net-
work inference. Concretely, the function draw is equivalent
to randomly drawing masked deterministic weight matrix
m = {ms

l,k} in neural networks, which is known as the

Dropout operations (Srivastava et al. 2014). Similarly, we
replace ws

l,k in our hybrid representation ϕ
s
l,k = w

s
l,k ·α

s
l,k

with ms
l,k · zs

l,k, and reformulate ϕs
l,k as

ϕ
s
l,k = ms

l,k · ǫsl,k, where ǫ
s
l,k = z

s
l,k ·αs

l,k, (12)

Algorithm 1: PGNAS

Data: Training dataset Dt, validation dataset Dv = {X, Y },
learning rate η, number of candidates C

Result: Searched architecture α∗

1 while Not Converged do
2 Sample M pairs of training sample (x, y) from Dt ;
3 Sample M random variables ǫi = {ǫ

s
l,k}, where

ǫ
s
l,k ∼ Bernoulli(psl) ;

4 psl ← psl +
∂

∂ps
l

[− 1
M

∑M

i=1 p(yi | f
θ,ǫi(xi))] +

∂
∂ps

l
[(
∑

l,k,s

(lsl,k)
2(1−psl)

2N
‖ms

l,k‖
2) + 1

N
H(psl)] ;

5 ms
l,k ← ms

l,k + ∂
∂ms

l,k

[− 1
M

∑M

i=1 p(yi |

fθ,ǫi(xi))] +
∂

∂ms
l,k

[(
∑

l,k,s

(lsl,k)
2(1−psl)

2N
‖ms

l,k‖
2)] ;

6 end
7 Sample C random variables ǫi = {ǫ

s
l,k}, where

ǫ
s
l,k ∼ Bernoulli(psl) ;

8 Initialize γbest ;
9 for each ǫi do

10 Compute performance γi on Dv based on

p(Y | fθ,ǫi(X)) ;
11 if γi is better than γbest then
12 ǫbest ← ǫi ;
13 γbest ← γi
14 end

15 end
16 Derive α∗ from ǫbest

In Eq. 12, we have an additional random variable α
s
l,k that

controls the activation of kernels whose distribution is un-
known. Here we propose using the marginal probability
p(αs

l,k | X,Y) to characterize its behavior, because the

marginal can reflect the expected probability of selecting
kernel αs

l,k given the training dataset. It exactly matches

the real behavior if the selections of kernels in a super-
network are independent. Since the joint distribution of net-
work architecture α = {αs

l,k} is a multivariate Bernoulli

distribution, its marginal distribution obeysBernoulli(psl,k)
(Dai et al. 2013), where psl,k is to be optimized. Therefore,
we have

ϕ
s
l,k = ms

l,k · ǫsl,k, where ǫ
s
l,k ∼ Bernoulli(p̃sl · p

s
l).
(13)

Here we omit the subscript k in the originalBernoulli(psl,k)
because the importance of branches which come from the
same kernel size group and layer should be identical. By
replacing p̃sl · p

s
l with a new variable psl , Eq. 13 has the same

form as Eq. 11. Then, we can obtain

LMC(θ) :=KL(qθ(ϕ) || p(ϕ))−
N∑

i=1

log p(yi | f
θ,ǫi(xi)),

s.t. Eǫ{LMC(θ)} = LV I(θ).
(14)

where variational parameters θ = {ms
l,k} are composed of

the deterministic kernel weights. ǫi = {ǫsl,k}i are the ith

sampled random variables which encodes the distribution

of network architecture. Eq. 14 indicates that the (negative)
ELBO can be computed very efficiently. It is equivalent to
the KL term minus the log likelihood that is inferenced by
the super-network fϕ (now reparameterized as fθ,ǫ). During
each network inference, convolution kernels are randomly
deactivated w.r.t. probability p = {psl }, which is exactly
equivalent to a dropout neural network.

Now, approximating posterior distribution over the hybrid
network representation is converted to optimizing the net-
work fϕ with dropout and a KL regularization term. If the
derivatives of both terms are tractable, we can efficiently op-
timize it in an end-to-end fashion.

Network Optimization In addition to the variational pa-
rameters θ, the variable p̃ and p in Eq. 13 should also be
optimized (either via grid-search (Gal 2016) or gradient-
based method (Gal, Hron, and Kendall 2017)). So we need
to compute ∂

∂p∂m
LMC(θ). If each convolution kernel is

deactivated with a prior probability us
l,k along with a

Gaussian weight prior N (ws
l,k; 0, I/(d

s
l,k)

2), then the pri-

ori distribution for the hybrid representation ϕ is ex-
actly a spike and slab prior p(ϕs

l,k) = us
l,k · δ(ws

l,k −

0) + (1 − us
l,k) · N (ws

l,k; 0, I/(d
s
l,k)

2), where dsk,l is

prior length scale. Following (Gal and Ghahramani 2016;
Gal, Hron, and Kendall 2017), the derivatives of Eq. 14 can
be approximated as

∂

∂psl ∂m
s
l,k

[−
1

N
(

N∑

i=1

p(yi | f
θ,ǫi(xi)) +H(psl))

+
∑

l,k,s

(dsl,k)
2(1− psl)

2N
‖ms

l,k‖
2],

(15)

where H(psl) =
∑

l,s k
s
l ·p

s
l · log p

s
l and ksl denotes the num-

ber of input channels for convolution kernel of spatial size s
at layer l. Please note that the above derivation is obtained
by setting the prior u to be zero, which indicates the network
architecture prior is set to be the whole super-network. The
motivation of employing u = 0 is that a proper architec-
ture prior is usually difficult to acquire or even estimate, but
u = 0 can be a reasonable one when we choose the over-
parameterized network that proves effective on many tasks
as our super-network. Besides, u = 0 provides us a more
stable way to optimize the LMC(θ) (Gal 2016). So, we will
use the super-network that are built upon manually designed
networks in our experiments.

Intuitively, the derived Eq. 15 tries to find a distribution
that can interpret the data well (the first likelihood term) and
keep the architecture as sparse as possible (the second and
third regularization terms). Please note here that the L2-like
term in Eq. 15 is not a conventional L2 regularization term.
Its coefficient (dsl,k)

2(1 − psl) correlates with architecture

selection parameter p and thus encourages the selection of
kernels whose learned weights w are not only representative
but also sparse (as the gradients w.r.t. p here rely on the spar-
sity of learned w). It is consistent with our design where we
correlate the network weights and architecture by proposing
the hybrid network representation ϕ.

Since the first term in Eq. 15 involves the derivatives
of the non-differentiable Bernoulli distribution (remember
ǫ
s
l,k ∼ Bernoulli(psl) in Eq. 13), we thus employ the

Gumbel-softmax (Jang, Gu, and Poole 2016) to relax the
discrete distribution Bernoulli(psl) to continuous space and
the ǫ in Eq. 15 and Eq. 13 can be deterministically drawn by

ǫ
s
l,k = σ(

1

τ
[log psl − log(1− psl) + log(log r2)

− log(log r1)])

s.t. r1, r2 ∼ Uniform(0, 1),

(16)

where σ denotes the sigmoid function and τ is the temper-
ature that decides how steep the sigmoid function is. If τ
goes to infinite, the above parametrisation is equivalent to
drawing the sample from Bernoulli distribution. (Similar re-
laxation is used in (Gal, Hron, and Kendall 2017) with an-
other re-parametrisation method) By adopting Eq. 16, the
derivatives in Eq. 15 can be computed. Combining the Eq.
8, 10 and 14 , one can see that the posterior distribution over
the hybrid representation ϕ can be approximated by simply
training the super-network in an end-to-end fashion with two
additional regularization terms and dropout ratio p.

2.3 Sampling and Ranking

Once the variational distribution qθ(ϕ) is obtained, we sam-
ple a group of network candidates S = {s1, s2, ..., sC} w.r.t.
qθ(ϕ), where the C is the number of samples. According
to Eq. 13, our sampling process is performed by activating
kernels stochastically with the learned psl , which is equiv-
alent to regular dropout operation. Specifically, each can-
didate is sampled by randomly dropping convolution ker-
nel ws

l,k w.r.t. the probability psl for every l, k and s in

the super-network model. Then the sampled candidates are
evaluated and ranked on a held-out validation dataset. Due
to the hybrid network representation, we actually sample
architecture-weight pairs, which relieves the mismatch prob-
lem. At last, the best-performing one is selected by Eq. 6.

We summarize the complete working flow in Algorithm.
1 and provide proof details in supplementary materials for
better understanding. Please note that the proposed PGNAS,
though not intentionally, leads to an adaptive dropout that re-
flects the importance of different parts in the super-network.
It thus relieves the dependency on the hyper-parameter sen-
sitive, carefully designed drop-out probability in the previ-
ous one-shot methods (Bender et al. 2018).

3 Experiments

To fully investigate the behavior of the PGNAS, we test our
PGNAS on six super-networks. Because we use u = 0 to
facilitate Eq. 15, we construct the super-networks based on
architecture priors perceived from manually designed net-
works. We evaluate the performance of our PGNAS on three
databases Cifar-10, Cifar-100 and ImageNet, respectively.
For every super-network, we insert a dropout layer after each
convolution layer according to Eq. 16 to facilitate the com-
putation of Eq. 15. This modification introduces parameters
and FLOPS of negligible overheads. Our PGNAS is trained
in an end-to-end way with the Stochastic Gradient Descent

Method Error(%) GPUs Days Params(M) Search Method

shake-shake + cutout (DeVries and Taylor 2017) 2.56 - 26.2 -

NAS + more filters (Zoph and Le 2016) 3.65 22400 37.4 RL
NASNET-A + cutout (Zoph et al. 2018) 2.65 1800 3.3 RL

PathLevel EAS + PyramidNet + cutout (Cai et al. 2018b) 2.30 8.3 13.0 RL
ENAS + cutout (Pham et al. 2018) 2.89 0.5 4.6 RL
EAS (DenseNet) (Cai et al. 2018a) 3.44 10 10.7 RL

AmoebaNet-A + cutout (Real et al. 2018) 3.34 3150 3.2 evolution
Hierachical Evo (Liu et al. 2017) 3.63 300 61.3 evolution

PNAS (Liu et al. 2018) 3.63 225 3.2 SMBO

BayesNAS + PyramidNet(Zhou et al. 2019) + cutout 2.40 0.1 3.4 gradient-based
DARTS + cutout (Liu, Simonyan, and Yang 2018) 2.83 4 3.4 gradient-based

SNAS + cutout (Xie et al. 2018) 2.85 1.5 2.8 gradient-based
NAONet + cutout (Luo et al. 2018) 2.07 200 128 gradient-based

One-Shot Top (Bender et al. 2018) 3.70 - 45.3 sampling-based
SMASH (Brock et al. 2017) 4.03 1.5 16.0 sampling-based

PGNAS-MI(ours) 2.06 6.5 33.4 guided sampling
PGNAS-MI∗(ours) 1.98 11.1 32.8 guided sampling

Table 1: Performance comparison with other state-of-the-art results. Please note that we do not fine-tune the network searched
by our method. ∗ indicates the architecture searched by sampling 10000 candidates. Full table is in supplementary material.

(SGD) using a single P40 GPU card for Cifar-10/Cifar-100
and 4 M40 GPU cards for ImageNet. Once a model con-
verges, we sample different convolution kernels w.r.t. the
learned dropout ratio to get 1500/5000/1500 candidate archi-
tectures for Cifar-10, Cifar-100 and ImageNet, respectively.
These 1500 candidates are ranked on a held-out validation
dataset and the one with the best performance will be se-
lected as the final search result.

3.1 Cifar-10 and Cifar-100

Super-network and Hyper-parameters. We test our PG-
NAS on Cifar-10 and Cifar-100 with the super-network,
i.e. SupNet-MI, which are based on the manually de-
signed multi-branch ResNet (Gastaldi 2017). Please refer to
the supplementary material for more details of the super-
networks and all hyper-parameter settings used in this paper.

Comparison with State-of-the-arts. Table. 1 shows the
comparison results on Cifar-10. Here PGNAS-X denotes the
performance of our PGNAS on the super-network SupNet-
X. From top to bottom, the first group consists of state-of-
the-art manually designed architectures on Cifar-10; the fol-
lowing three groups list the related NAS methods utilizing
different algorithms, e.g. RL, evolution, and gradient decent;
the last group exhibits the performance of PGNAS.

Please note that the search spaces utilized in each work
are quite different. For example, (Zoph et al. 2018;
Real et al. 2018; Liu, Simonyan, and Yang 2018;
Pham et al. 2018) employ cell-based search space where
each cell contains 4 nodes and there are 5-11 opera-
tion candidates between two nodes, (Cai et al. 2018a;
Cai et al. 2018b; Zhou et al. 2019) utilize DenseNet and
PyramidNet (Han, Kim, and Kim 2017) as base network,
respectively, and (Luo et al. 2018; Bender et al. 2018;
Brock et al. 2017) apply search algorithm on their self-
designed search space. PGNAS-MI incorporates the
multi-branch ResNet which only provides up to 4 operation
candidates between two nodes (layers) as the initial model.

It suggests that our search space is much smaller than the
one used in state-of-the-art works such as NAONet, EAS
and PathLevel EAS. Still, the proposed PGNAS is capable
of finding very advanced architectures in a efficient and
effective way, e.g. it finds the architecture at the lowest
errors 1.98% on 11.1 GPU days only.

We also enlist the multi-branch ResNet (Gastaldi 2017)
that inspires the design of our super-network in Table 1. Our
PGNAS-MI outperform ”shake-shake+cutout” by 0.58%.
Regarding the sampling based one-shot method ”One-Shot
Top” which achieves a 3.7% classification error by randomly
sampling 20000 architectures, our PGNAS attains a much
higher performance by sampling only 1500 network archi-
tectures due to the posterior distribution guided sampling.

Table. 2 further demonstrate the performance of our PG-
NAS on a much challenging dataset Cifar-100. Our PG-
NAS achieves a good trade-off on efficiency and accuracy.
It achieves 14.28% error rate with only 11 GPU days, which
outperforms the most advanced results NAONet in terms of
both model performance and search time.

Please note that results of our PGNAS are achieved during
search process without any additional fine-tuning on weights
of the searched architectures, while those of other methods
are obtained by fine-tuning the searched models. In the fol-
lowing ablation study, we will discuss more on this point.

Ablation Study and Parameter Analysis. We first eval-
uate the effect of our posterior distribution guided sampling
method in Table. 3. In order to demonstrate the general-
ization of PGNAS, in addition to the SupNet-MI/SupNet-
M which are based on the multi-branch ResNet, we also
apply PGNAS to the architectures obtained by ENAS
(Pham et al. 2018). We denote them as SupNet-EI/SupNet-
E. Please refer to the supplementary materials for more de-
tails.

Compared with the baseline ”Random” sampling that
is implemented by employing predefined dropout strategy
as discussed in (Bender et al. 2018), PGNAS successfully

Method Error(%) GPUs Days Params(M) Search Method

NASNET-A (Zoph et al. 2018) 19.70 1800 3.3 RL
ENAS (Pham et al. 2018) 19.43 0.5 4.6 RL

AmoebaNet-B (Real et al. 2018) 17.66 3150 2.8 evolution
PNAS (Liu et al. 2018) 19.53 150 3.2 SMBO

NAONet + cutout (Luo et al. 2018) 14.36 200 128 gradient-based

PGNAS-MI + constant L2 term(ours) 17.41 - 39.6 -
PGNAS-MI(ours) 14.28 11 46.4 guided sampling

Table 2: State-of-art results on Cifar-100. Please note that we do not fine-tune the network searched by our method. ”PGNAS-MI
+ constant L2 term” indicates we replace the second L2 term in Eq. 15 with conventional a L2 term with a constant weight.

SupNet-EI SupNet-E SupNet-MI SupNet-M
Err. Param. Err. Param. Err. Param. Err. Param.

Full model 2.78% 15.3M 2.98% 4.6M -% 72.7M 2.58% 26.2M

Random w/o FT 13.45% 10.7M 15.87% 3.0M 9.75% 35.4M 2.63% 22.4M

Random w/ FT 3.16% 10.7M 3.47% 3.0M 2.69% 35.4M 2.56% 22.4M

PGNAS 2.56% 10.8M 2.73% 3.1M 2.06% 33.4M 2.20% 21.6M

Table 3: Impact of the guided sampling. w/o FT and w/ FT indicate whether the searched one is fine-tuned on the dataset.

l2 50 150 250 500
Error(%) 2.13 2.06 2.27 2.39

Params(M) 49.9 33.4 23.8 18.2

Table 4: Impact of the weight prior l2 on SupNet-EI.

EI M EI†

τ = 2
3 2.74% 2.49% 2.68%

τ = 1
5 2.56% 2.20% -

Table 5: Impact of the temperature τ . † denotes fine-tuning.

finds better sub-networks which bring relatively 14% - 23%
gain. Evidently, the posterior distribution guided sampling
is much more effective, which validates that our approach
can learn a meaningful distribution for efficient architec-
ture search. Besides, as can be viewed in the table, there
is usually a huge performance gap between the architecture
searched with predefined distribution with and without fine-
tuning, which reveals the mismatching problems.

Table. 4 discusses the weight prior l in Eq. 16. We find

that a good l usually makes the term
∑

l,i,s

(lsl,k)
2(1−ps

l)

2N in

Eq. 15 fall into a commonly used weight decay range. So we
choose l by grid search. As shown in this table, the weight
prior l affects both error rate and model size. The higher the
l is, the smaller the size of parameters. We choose the one
with the minimal error rate.

Table. 5 shows the impact of temperature value τ in Eq.

0.05K 0.5k 1.5k 5.0k 10k 20k

Error(%) 2.17 2.06 2.06 2.04 1.98 -
∆GDays 0.02 0.23 0.69 2.31 4.63 9.26

Table 6: Impact of the number of candidates on SupNet-MI.

MI∗ M E EI

Channel-level 0.44 0.18 0.33 0.29
Operation-level 0.26 0.10 0.19 0.21

Table 7: Proportions of dropped channels and operations.

16. It shows that a smaller τ leads to a lower error, which
is consistent with the analysis regarding to Eq. 16. The cor-
responding fine-tuned result of our PGNAS also provides
marginal improvement, which demonstrates the reliability of
our PGNAS on sampling of both architecture and weights.

We further evaluate the impact of number of samples in
Table. 6. The performance improves along with the increase
of number of samples as well as the GPU days. Here we
choose sampling 1500 architectures as a trade-off between
the complexity and accuracy. Please also note that com-
pared with other sampling-based NAS methods, our scheme
achieves 2.17 % error rate by sampling only 50 architectures
with the assistance of the estimated a poseteriori distribu-
tion. It further reveals the fact that the estimated distribution
provides essential information of the distribution of architec-
tures and thus significantly facilitates the sampling process
in terms of both efficiency and accuracy.

As discussed before, the correlated L2-like term in the de-
rived objective function Eq. 15 is not a conventional L2 reg-
ularization term. As demonstrated in Table. 2, we observe
severe performance drop with a constant weighted L2 term.

Visualization. We provide the visualization for the
searched architecture of the best-performed PGNAS-MI∗ in
supplementary materials. Given the initial super-network a
multi-branched ResNet whose block structures are identical,
PGNAS can still find diverse structure for each basic block.

3.2 ImageNet

We further evaluate our PGNAS on ImageNet with two
super-networks based on ResNet50 (He et al. 2016) and

Method Error(%)(Top1/Top5) GPUs Days Params(M) Search Method

NASNET-A (Zoph et al. 2018) 26.0/8.4 1800 5.3 RL
AmoebaNet-C (Real et al. 2018) 24.3/7.6 3150 6.4 evolution

PNAS (Liu et al. 2018) 25.8/8.1 225 5.1 SMBO

BayesNAS (λo
w = 0.005) (Zhou et al. 2019) 26.5/8.9 0.2 3.9 gradient-based

FBNet-C (Wu et al. 2018) 25.1/- 9 5.5 gradient-based
DARTS (Liu, Simonyan, and Yang 2018) 26.9/9.0 4 4.9 gradient-based

SNAS (Xie et al. 2018) 27.3/9.2 1.5 4.3 gradient-based

One-Shot Top (Bender et al. 2018) 26.2/- - 6.8 sampling-based
SinglePath (Guo et al. 2019) 25.3/- 12 - sampling-based

PGNAS-D-121(ours) 24.8/7.5 26 6.6 guided sampling

Table 8: Comparison with other state-of-the-art results on ImageNet. Please note our model is directly searched on ImageNet.

Model Res50 Inflated Res50 PGNAS-R-50

Error 23.96% 22.93% 22.73%
Params 25.6M 44.0M 26.0M

Table 9: Test results on ImageNet with inflated ResNet-50.

DenseNet121 (Huang et al. 2017), respectively. Please find
detailed settings in the supplementary material. Rather than
transferring architectures searched on smaller dataset, the
efficiency and flexibility of PGNAS enable us to directly
search architectures on ImageNet within few days.

We first provide test results of our PGNAS on ImageNet
in Table 9 using a relatively small search space by inflating
ResNet50 without limiting the size of the model parameters.
Hype-parameters and training process for the three models
are identical for fair comparison. It can be observed that
PGNAS-R-50 outperforms the ResNet50 by 1.23% with a
similar size of parameters. Table. 8 shows the comparison
with the state-of-the-art results on ImageNet. Our method
can search a very competitive architecture within 26 gpu
days. Please note that we do not explicitly control the param-
eter size of the architectures searched by PGNAS because
the goal of PGNAS is to find the architecture with the best
accuracy. As can be viewed in Table. 4, larger model does
not necessarily generate better performance in our scheme.

Please refer to supplementary materials for more perfor-
mance evaluation and analysis.

4 Discussions

Weight Sharing. Weight sharing is a popular method
adopted by one-shot models to greatly boost the effi-
ciency of NAS. But it is not well understood why shar-
ing weight is effective (Elsken, Metzen, and Hutter 2018;
Bender et al. 2018). In PGNAS, as discussed in subsection
2.2, we find that weight sharing can be viewed as a re-
parametrization that enables us to estimate the posterior dis-
tribution through end-to-end optimization in our scheme.

Network pruning. Our method is a NAS method
that conducts channel-level model selection, which is
reminiscent of network pruning. We claim that the
fundamental goal of NAS and network pruning is
quite different. In fact, most of differentiable/one-shot
NAS methods such as(Liu, Simonyan, and Yang 2018;
Cai, Zhu, and Han 2018; Xie et al. 2018; Wu et al. 2018;

Bender et al. 2018; Guo et al. 2019) start from a pre-
defined cell/super-net and search for sub-architectures.
Channel-level search only enables fine-grained architecture
search (e.g., ’channel search space’ in (Guo et al. 2019)).
Besides, it is often that all the channels of an operation are
dropped, and PGNAS conducts operation-level selection
in such cases. Please refer to Table. 7 for the proportion
of channels and operations that are not selected. Actually,
in the re-parameterization process of Variational Inference
that is used for approximating the posterior distribution,
many schemes can be adopted. Dropout, which makes
the sampling process resemble pruning, is just one of
them. We could also use additive Gaussian noise for re-
parameterization and the sampling will not involve pruning
any more (section 3.2.2 (Gal 2016)).

Limitations and Future Works. One limitation of our
PGNAS is that it can not explicitly choose the non-
parametric operations such as pooling. Another one is
that our PGNAS requires prior knowledge on architectures
which is hard to achieve. Here we approaches the prior only
by manually designed networks. So our future work may be
1) enabling selections on the non-parametric operations (e.g.
assigning a 1x1 convolution after each pooling operation as
a surrogate to decide whether we need this pooling branch
or not.) 2) investigating the robustness of our PGNAS to dif-
ferent prior architectures.

5 Conclusion

In this paper, we view the NAS problem from a Bayesian
perspective and propose a new NAS approach, i.e. PGNAS,
which converts NAS to a distribution construction problem.
It explicitly approximates posterior distribution of network
architecture and weights via network training to facilitate an
more efficient search process in probability space. It also al-
leviates the mismatching problem between architecture and
shared weights by sampling architecture-weights pair, which
provides more reliable ranking results. The proposed PG-
NAS is efficiently optimized in an end-to-end way, and thus
can be easily extended to other large-scale tasks.

Acknowledgement

This work was supported by the National Key R&D Pro-
gram of China under Grant 2017YFB1300201, the National
Natural Science Foundation of China (NSFC) under Grants

61622211 and 61620106009 as well as the Fundamental
Research Funds for the Central Universities under Grant
WK2100100030.

References
[Baker et al. 2016] Baker, B.; Gupta, O.; Naik, N.; and Raskar, R.

2016. Designing neural network architectures using reinforcement
learning. arXiv preprint arXiv:1611.02167.

[Baker et al. 2017] Baker, B.; Gupta, O.; Raskar, R.; and Naik, N.
2017. Accelerating neural architecture search using performance
prediction. arXiv preprint arXiv:1705.10823.

[Bender et al. 2018] Bender, G.; Kindermans, P.-J.; Zoph, B.; Va-
sudevan, V.; and Le, Q. 2018. Understanding and simplifying one-
shot architecture search. In International Conference on Machine
Learning, 549–558.

[Brock et al. 2017] Brock, A.; Lim, T.; Ritchie, J. M.; and Weston,
N. 2017. Smash: one-shot model architecture search through hy-
pernetworks. arXiv preprint arXiv:1708.05344.

[Cai et al. 2018a] Cai, H.; Chen, T.; Zhang, W.; Yu, Y.; and Wang,
J. 2018a. Efficient architecture search by network transformation.
AAAI.

[Cai et al. 2018b] Cai, H.; Yang, J.; Zhang, W.; Han, S.; and Yu, Y.
2018b. Path-level network transformation for efficient architecture
search. arXiv preprint arXiv:1806.02639.

[Cai, Zhu, and Han 2018] Cai, H.; Zhu, L.; and Han, S. 2018. Prox-
ylessnas: Direct neural architecture search on target task and hard-
ware. arXiv preprint arXiv:1812.00332.

[Dai et al. 2013] Dai, B.; Ding, S.; Wahba, G.; et al. 2013. Multi-
variate bernoulli distribution. Bernoulli 19(4):1465–1483.

[DeVries and Taylor 2017] DeVries, T., and Taylor, G. W. 2017.
Improved regularization of convolutional neural networks with
cutout. arXiv preprint arXiv:1708.04552.

[Domhan, Springenberg, and Hutter 2015] Domhan, T.; Springen-
berg, J. T.; and Hutter, F. 2015. Speeding up automatic hyper-
parameter optimization of deep neural networks by extrapolation
of learning curves. In IJCAI, volume 15, 3460–8.

[Elsken, Metzen, and Hutter 2018] Elsken, T.; Metzen, J. H.; and
Hutter, F. 2018. Neural architecture search: A survey. arXiv
preprint arXiv:1808.05377.

[Gal and Ghahramani 2016] Gal, Y., and Ghahramani, Z. 2016.
Dropout as a bayesian approximation: Representing model uncer-
tainty in deep learning. In international conference on machine

learning, 1050–1059.

[Gal, Hron, and Kendall 2017] Gal, Y.; Hron, J.; and Kendall, A.
2017. Concrete dropout. In Advances in Neural Information Pro-
cessing Systems, 3581–3590.

[Gal 2016] Gal, Y. 2016. Uncertainty in deep learning. Ph.D.
Dissertation, PhD thesis, University of Cambridge.

[Gastaldi 2017] Gastaldi, X. 2017. Shake-shake regularization.
arXiv preprint arXiv:1705.07485.

[Guo et al. 2019] Guo, Z.; Zhang, X.; Mu, H.; Heng, W.; Liu, Z.;
Wei, Y.; and Sun, J. 2019. Single path one-shot neural architecture
search with uniform sampling. arXiv preprint arXiv:1904.00420.

[Han, Kim, and Kim 2017] Han, D.; Kim, J.; and Kim, J. 2017.
Deep pyramidal residual networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 5927–
5935.

[He et al. 2016] He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, 770–778.

[Huang et al. 2017] Huang, G.; Liu, Z.; Van Der Maaten, L.; and
Weinberger, K. Q. 2017. Densely connected convolutional net-
works. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 4700–4708.

[Jang, Gu, and Poole 2016] Jang, E.; Gu, S.; and Poole, B. 2016.
Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144.

[Kingma and Welling 2013] Kingma, D. P., and Welling, M. 2013.
Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114.

[Klein et al. 2016] Klein, A.; Falkner, S.; Springenberg, J. T.; and
Hutter, F. 2016. Learning curve prediction with bayesian neural
networks.

[Liu et al. 2017] Liu, H.; Simonyan, K.; Vinyals, O.; Fernando, C.;
and Kavukcuoglu, K. 2017. Hierarchical representations for effi-
cient architecture search. arXiv preprint arXiv:1711.00436.

[Liu et al. 2018] Liu, C.; Zoph, B.; Neumann, M.; Shlens, J.; Hua,
W.; Li, L.-J.; Fei-Fei, L.; Yuille, A.; Huang, J.; and Murphy, K.
2018. Progressive neural architecture search. In Proceedings of the
European Conference on Computer Vision (ECCV), 19–34.

[Liu, Simonyan, and Yang 2018] Liu, H.; Simonyan, K.; and Yang,
Y. 2018. Darts: Differentiable architecture search. arXiv preprint
arXiv:1806.09055.

[Luo et al. 2018] Luo, R.; Tian, F.; Qin, T.; Chen, E.; and Liu, T.-
Y. 2018. Neural architecture optimization. In Advances in Neural
Information Processing Systems, 7826–7837.

[Pham et al. 2018] Pham, H.; Guan, M. Y.; Zoph, B.; Le, Q. V.; and
Dean, J. 2018. Efficient neural architecture search via parameter
sharing. arXiv preprint arXiv:1802.03268.

[Real et al. 2018] Real, E.; Aggarwal, A.; Huang, Y.; and Le, Q. V.
2018. Regularized evolution for image classifier architecture
search. arXiv preprint arXiv:1802.01548.

[Saxena and Verbeek 2016] Saxena, S., and Verbeek, J. 2016. Con-
volutional neural fabrics. In Advances in Neural Information Pro-
cessing Systems, 4053–4061.

[Shin, Packer, and Song 2018] Shin, R.; Packer, C.; and Song, D.
2018. Differentiable neural network architecture search.

[Srivastava et al. 2014] Srivastava, N.; Hinton, G.; Krizhevsky, A.;
Sutskever, I.; and Salakhutdinov, R. 2014. Dropout: a simple way
to prevent neural networks from overfitting. The Journal of Ma-
chine Learning Research 15(1):1929–1958.

[Swersky, Snoek, and Adams 2014] Swersky, K.; Snoek, J.; and
Adams, R. P. 2014. Freeze-thaw bayesian optimization. arXiv
preprint arXiv:1406.3896.

[Tan et al. 2018] Tan, M.; Chen, B.; Pang, R.; Vasudevan, V.; and
Le, Q. V. 2018. Mnasnet: Platform-aware neural architecture
search for mobile. arXiv preprint arXiv:1807.11626.

[Tipping 2001] Tipping, M. E. 2001. Sparse bayesian learning
and the relevance vector machine. Journal of machine learning
research 1(Jun):211–244.

[Wu et al. 2018] Wu, B.; Dai, X.; Zhang, P.; Wang, Y.; Sun, F.; Wu,
Y.; Tian, Y.; Vajda, P.; Jia, Y.; and Keutzer, K. 2018. Fbnet:
Hardware-aware efficient convnet design via differentiable neural
architecture search. CoRR abs/1812.03443.

[Xie et al. 2018] Xie, S.; Zheng, H.; Liu, C.; and Lin, L. 2018.
Snas: stochastic neural architecture search. arXiv preprint
arXiv:1812.09926.

[Zela et al. 2018] Zela, A.; Klein, A.; Falkner, S.; and Hutter,
F. 2018. Towards automated deep learning: Efficient joint
neural architecture and hyperparameter search. arXiv preprint
arXiv:1807.06906.

[Zhong et al. 2018] Zhong, Z.; Yan, J.; Wu, W.; Shao, J.; and Liu,
C.-L. 2018. Practical block-wise neural network architecture gen-
eration. In Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2423–2432.

[Zhou et al. 2019] Zhou, H.; Yang, M.; Wang, J.; and Pan, W. 2019.
Bayesnas: A bayesian approach for neural architecture search.
arXiv preprint arXiv:1905.04919.

[Zoph and Le 2016] Zoph, B., and Le, Q. V. 2016. Neural ar-
chitecture search with reinforcement learning. arXiv preprint
arXiv:1611.01578.

[Zoph et al. 2018] Zoph, B.; Vasudevan, V.; Shlens, J.; and Le, Q. V.
2018. Learning transferable architectures for scalable image recog-
nition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, 8697–8710.

	1 Introduction
	2 PGNAS
	2.1 Problem Formulation
	2.2 Posterior Distribution Approximation
	2.3 Sampling and Ranking

	3 Experiments
	3.1 Cifar-10 and Cifar-100
	3.2 ImageNet

	4 Discussions
	5 Conclusion

