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Abstract

In this paper, we present a graph-based Transformer for se-
mantic parsing. We separate the semantic parsing task into
two steps: 1) Use a sequence-to-sequence model to generate
the logical form candidates. 2) Design a graph-based Trans-
former to rerank the candidates. To handle the structure of
logical forms, we incorporate graph information to Trans-
former, and design a cross-candidate verification mechanism
to consider all the candidates in the ranking process. Further-
more, we integrate BERT into our model and jointly train
the graph-based Transformer and BERT. We conduct exper-
iments on 3 semantic parsing benchmarks, ATIS, JOBS and
Task Oriented semantic Parsing dataset (TOP). Experiments
show that our graph-based reranking model achieves results
comparable to state-of-the-art models on the ATIS and JOBS
datasets. And on the TOP dataset, our model achieves a new
state-of-the-art result.

Introduction
Semantic parsing is a classic NLP task that has attracted a
huge amount of attention recently. It aims at mapping a nat-
ural language sentence into a logical form. With the rapid
development of natural language processing, semantic pars-
ing has been used in various applications, such as question
answering (Kwiatkowski et al. 2011), task-oriented dialog
systems (Yih et al. 2015) and interpreting instructions (Artzi
and Zettlemoyer 2013).

Recently, many approaches based on the sequence-to-
sequence(S2S) model have been successfully used for se-
mantic parsing (Dong and Lapata 2016; Yin and Neubig
2017; Dong and Lapata 2018). In the analysis of (Gupta
et al. 2018), the accuracy of exact match on TOP dataset
for RNN based sequence-to-sequence model is 75.3%, but
beam search with the size of 5 can cover 88.76% golden
target sequences. Since the exact match result is computed
by the top1 prediction from beam search, it means that the
candidates from the beam search have a greater chance of
containing the golden target.
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To select the correct target from these candidates, it is
necessary to use a ranking model to rerank these candi-
dates. There exist many applications that use sequence-
to-sequence with reranking methods (Wen et al. 2015;
Einolghozati et al. 2019). (Wen et al. 2015) uses recur-
rent generation model with a convolutional ranker for a di-
alogue system. In (Einolghozati et al. 2019), they propose
a SVM+language model to rerank the candidates generated
by generation model. These methods achieve good perfor-
mance, since the ranking model can capture the global in-
formation in questions and decoding candidates simultane-
ously. However, the general ranking model can not capture
the strong hierarchical structures in the logical forms. For
example, Figure 1 shows an example of the TOP dataset.
The logical form in this dataset is a task oriented represen-
tation of a dialog system. It contains a tree structure, which
also can be considered as a special graph.

Question: How far is the coffee shop

IN:GET_INSTANCE

SL:DESTINATION

IN:GET_RESTAURANT_LOCATION

IN:GET_INSTANCEthe shop

How far is

coffee

Logical Form: [IN:GET_DISTANCE How far is [SL:DESTINATION [IN:GET_LOCATION 
[SL:CATEGORY_LOCATION the coffee shop ] ] ] ]

Figure 1: An example of Task Oriented Parsing (TOP)
dataset.

In this paper, we propose a ranking model for logical
form reranking based on Transformer (Vaswani et al. 2017),
compared with other methods based on tree-structure, our
graph-based transformer is more scalable, which can han-
dle different semantic graphs in an efficient way. To capture
the tree structure information of logical forms, we extend
transformer with a Graph-based attention strategy. We in-
corporate the structure information of the logical forms to
multi-head attention in the transformer and generate graph-
aware interaction features. This method makes each token



interact with parent nodes in the semantic tree. Further-
more, to incorporate cross-candidate information, we enable
each logical form candidate to interact with the other candi-
dates based on their representations, which is inspired by V-
NET (Wang et al. 2018). V-NET is applied on multi-passage
reading comprehension dataset. During training, each sam-
ple in their task contains several extracted candidate answer
spans which are extracted from the given passage. To better
select the correct one, V-NET computes the context vector
using the selected answers by the boundary model to help
the ranking score computation. It is a novel way to aggre-
gate information from all candidates in the ranking model.
In our model, different from V-NET, using other answer can-
didates as a context, we use the similarity score between the
current candidate and all other candidates through an inter-
action strategy to help the ranking score computation.

The main contributions of this paper are:

• We extend the transformer model with a graph-based
matching strategy to enable it to capture the structure in-
formation of logical forms.

• We design a cross-candidate verification method using the
similarity between each candidate and the other candi-
dates to boost the ranking performance.

• We conduct experiments on 3 semantic parsing datasets,
TOP, ATIS and JOBS. Our reranking model with a basic
sequence-to-sequence generation model achieves a new
state-of-the-art result on the TOP dataset and compara-
ble results to the state-of-the-art models on the ATIS and
JOBS datasets.

Model
Sequence-to-sequence based models have been successfully
applied to semantic parsing. They are trained by annotated
<question, logical form> pairs without human designed
templates and features. In recent semantic parsing meth-
ods (Dong and Lapata 2018), researchers decode the can-
didate logical forms using beam search method and select
top 1 candidate as the decoding result.

These methods have achieved good performance in var-
ious semantic parsing tasks. However, we find that beam
search can recall most correct logical forms, but some of
them can not be ranked in the first place. In this work, we
use the reranking based semantic parsing method which first
generates candidates using the generation model, and then
rerank the candidates by a ranking model.

In the following sections, we first briefly introduce the
generation model we used in this work and then we intro-
duce our model for reranking in detail.

Generation Model
The generation model in this paper is based on the general
encoder-decoder framework, using a bidirectional RNN-
GRU (Cho et al. 2014) layer as an encoder and a unidirec-
tional RNN-GRU layer as a decoder, which has been applied
in semantic parsing tasks in (Dong and Lapata 2016; Rabi-
novich, Stern, and Klein 2017; Dong and Lapata 2018). With
the input question of Q = [x1, x2...x|Q|], xi ∈ Vq the model

decodes the target logical form L = [l1, l2, ...l|L|], li ∈ Vl,
where Vq and Vl are the source and target vocabularies. Our
baseline model aims to estimate P (L|Q), and the condi-
tional probability can be formulated as follows:

p(L|Q) =

|L|∏
t=1

p(lt|lt−1, ..., l1, Q) (1)

We will not introduce the implementation of the
sequence-to-sequence model in detail because of its popu-
larity these years. Generally, the encoder uses embeddings
of each token in question Q as input, and generates hidden
state ri at the ith position of Q. To decode the target se-
quence with the hidden state ri, attention mechanism(Bah-
danau, Cho, and Bengio 2014) is used in the decoder:

eti = uT tanh(We[ri; s
t] + be)

ati =
eti∑|Q|
j=1 e

t
j

; ct =

|Q|∑
i=1

atiri
(2)

where ri is the encoder hidden state and st is the decoder
hidden state, ct is the context vector at time stamp t, uT , We

be are trainable parameters.
Specifically, to solve the out-of-vocabulary (OOV) words

in the target dictionary Vl, we leverage the copy mechanism
in (See, Liu, and Manning 2017). We use the attention distri-
bution ati as the copy probability from the source sequence
and combine it with the distribution of generating probabil-
ity in the target dictionary by a gate mechanism.

Reranking Model
In this section, we introduce our Graph-based Transformer
with Cross-candidate Verification (GTCV) model. To extract
better sentence representations, we integrate BERT to our
ranking model with a graph-aware matching strategy and
cross-candidate verification.

BERT Encoder We will first briefly introduce the BERT
encoder in our model. Given a list of target logical form can-
didates LC = [L1, L2, ..., Lc] from generation model,where
Li is a candidate, and their labels Y = [y1, y2, ..., yc], yi ∈
{0, 1} indicating whether the candidate is correct, where c
is the number of all candidates, and the input question Q.
We then make the question and each logical form with the
corresponding label as an input of the our model. The tokens
of all pairs are packed into a token sequence S as “[CLS] Q
[SEP] Li [SEP]”, where [CLS], [SEP] are special tokens to
separate the tokens of question Q and the ith logical form
candidate Li. The representation of each token is the sum of
three types of embedding, WordPiece embedding (Wu et al.
2016), Position embedding indicating the position of input
tokens, and Segment embedding, which is used to indicate
the question segment and logical form segment.

Then, the representation of S is fed into the BERT
encoder which is a multi-layer bidirectional Trans-
former(Vaswani et al. 2017). For the implementation of
its architecture, readers can refer to (Vaswani et al. 2017;
Devlin et al. 2018). BERT encodes the input token se-
quence S into a context aware representation Hi =
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Figure 2: Overview of our method for semantic parsing.

{h0, h1, ..., h|S|−1} for the ith candidate. Then Hi is used
in our graph-based transformer layer.

To directly use BERT in the ranking task, we extract the
final hidden state of the first token, h0, corresponding to the
special token “[CLS]”. The label probabilities are computed
with h0 by a standard softmax layer. Finally, all of the pa-
rameters of the model are fine-tuned to maximize the log-
probability of the correct label in the ranking task.

Graph Matching Although BERT has proven its effec-
tiveness for text sequence matching tasks, there still exists a
limitation to matching questions and logical form candidates
in our task. The two sequences can only interact through
a general attention mechanism in the transformer, which is
not enough to capture the structure information in complex
matching tasks, since it is based on transformer and only
uses position embedding to encode the position informa-
tion. To overcome the limitation, we leverage a hierarchical
graph-aware matching method to extend BERT for our task.
To better encode the structure information, we add extra n
layers of graph-based transformer for graph matching, incor-
porated with a masked attention mechanism, which uses an
adjacent matrix M as mask matrix. This mask matrix con-
tains the structure information of the parsing tree.

For each transformer block, we first apply a multi-head
self-attention on input features. We set Z0 = Hi as the input
of the ith candidate, and the attention matrix in each head is
computed as follows:

A = softmax((WQZ0,W
KZT

0 )/
√
dk) (3)

where WQ and WK are trainable parameters, dk is the di-
mension of Z0.

This basic attention matrix in the transformer is a word-
to-word attention that is not suitable in this task because it

makes every token attend to each other and can not incorpo-
rate structure information in matching. Thus, we propose a
mask attention method based on the adjacency matrix of the
parsing tree.

To generate the adjacency matrix, we first use the brack-
eting matching method to check the validation of candidate
parsing trees. If it is an invalid parsing tree, we will dis-
card it. For each logical form, we make the nonterminal to-
kens as nodes, the brackets to indicate each layer of tree,
and the parameters in logical form as leaves. The procedure
has been used in previous methods like SEQ2TREE (Dong
and Lapata 2016). After that, we first initialize a zero matrix
M ∈ R|L|∗|L|, then set Mi,j to 1, which represents that lj
is the parent of the token li. It guarantees that each token
in logical form will only interact with its corresponding par-
ents and not with nodes in different sub-trees. After process-
ing all tokens in question q, we will obtain the the adjacency
matrix M as a mask matrix.

Then, we combine the mask adjacency matrix with the
attention matrix:

Gi,j =

{
Ai,jMi−|Q|−2,j−|Q|−2 i, j > |Q|+ 2

Ai,j other

And compute the interaction features:

Z∗i = GWZZi − 1 (4)

whereWZ are the trainable parameters and Z∗i are the inter-
action features between the question in ith layer and logical
form in one head of the multi-head attention mechanism. We
concatenate all features from each head as Zi. We apply the
operation n times and acquire the graph aware features Zn.
We then apply the average pooling on Zn to obtain the final
graph based representation Z.



Finally, we combine the interaction feature with the first
hidden state h0 of the BERT encoder:

g = [Z : h0]

m = sigmoid(W gg + bg)
(5)

where W g and bg are trainable parameters, and m is the
matching score of the graph matching.

Cross-candidate Verification The BERT encoder and
Graph matching method focus on encoding the question
and logical form better and on extracting the interaction
representation. However, the candidates from beam search
method are always similar, which is hard for the reranking
task. Furthermore, since the input contains a list of can-
didates, aggregating the information across all candidates
should be useful in this task.

We can observe that each subtree of the correct logical
form usually appears in the candidates. If we assume that
one of the candidates is the correct one, then each part of
this candidates is likely to be covered by other candidates.
Thus the confidence for one candidate to be the correct one
can be implied by the similarity to other candidates. We pro-
pose a method to enable our model to consider all candidates
and to verify the candidate through their similarity with each
other. To apply this operation, we feed all candidates with
the question into the model simultaneously as a list-wise in-
put. For each candidate, we compute their representations
gi for the ith candidate by Eq. 5. gi can be considered as
the representation of each candidate containing the structure,
semantic and interaction features. Each candidate computes
the similarity from each other with their representations as
the supportive information:

rij = uTd tanh(W
d[gi, gj , gigj ] + bd)

dij =
rij∑c
k=1 r

i
k

;

vj = sigmoid(

c∑
k=1

dkj )

(6)

where W d and bd are trainable parameters, dij represents the
similarity between the ith and jth candidates, and for the jth
candidate, we use the sum of the normalized similarity score
vj as the final verification score.

Finally, we combine the verification score with the match-
ing score as the final ranking score,

pi = (1− α)mi + αvi (7)

where mi and vi are the matching score and verification
score of the ith candidate, and α ∈ [0, 1] is used to bal-
ance the two parts. Then the loss function can be computed
as follows,

L =

c∑
i=1

−yilog(pi)− (1− yi)log(1− pi) (8)

where yi is the label of ith candidate.

Experiment
Datasets
We conduct our experiment on 3 semantic parsing datasets
JOBS, ATIS and TOP.

JOBS is a dataset containing 640 queries annotated from
a database of job listings. Questions are paired with Prolog-
style queries. We follow the training and test split in (Zettle-
moyer and Collins 2012). It contains 500 training and 140
test instances. They have tagged the values for the variables
company, degree, language, platform, location, job area, and
number.

ATIS is a dataset containing 5410 queries to a flight book-
ing system (Hemphill, Godfrey, and Doddington 1990). The
data has been split into 4480 training instances, 480 vali-
dation instances, and 450 test instances. Each pair contains
a question with the corresponding lambda-calculus expres-
sions and identified values for the variables of date, time,
city, aircraft code, airport, airline and number.

TOP1 is a large scale semantic parsing dataset (Gupta et
al. 2018), containing 44,783 annotation question and parsing
tree pairs, which are split into 31,279 for training, 4,462 for
validation and 9,042 for test. The utterances in this dataset
are focused on navigation, events, and navigation to events.

For the TOP dataset, (Einolghozati et al. 2019) remove
the samples with intent of “UNSUPPORTED” which repre-
sents out-of-domain questions and get a subset of TOP, this
dataset contains 28,276 training samples, 4,014 validation
samples and 8,191 test samples. We also conduct an experi-
ment on this dataset.

Settings
In our generation model, Glove word embeddings (Pen-
nington, Socher, and Manning 2014) are used as our pre-
trained word embeddings.Input sentences are lower-cased.
The beam size of the model is 10. We set the dropout rate to
0.5. The dimension of all hidden vectors and word embed-
ding is set to 300. Word vocabulary is not shared between en-
coder and decoder. Parameters are randomly initialized from
a uniform distribution (-0.01, 0.01). We use Adagrad (Duchi,
Hazan, and Singer 2011) as optimizer during training, and
an early stop strategy is used to decide the training epoch.
In our GTCV ranking model, we load the pre-trained model
of BERTBASE with small parameters to reduce the training
time. The number of Transformer blocks is 12, and the di-
mension of all hidden states is 768 in our model. The batch
size of the model is 32. Dropout is set to 0.1. We set the
block number n of our graph-based transformer to 3. The
score weight α in our model is set to be 0.1. We use all the
10 candidates from beam search to train and evaluate our
ranking model. We optimize our model by an Adam opti-
mizer with an initial learning rate of 3e − 4, β1 = 0.9, β2
= 0.999 and γ= 10−9. Gradient accumulation is used in our
training, and accumulate step is set to 12.

For TOP, we use the same metrics as used in (Gupta et
al. 2018), including exact match accuracy(ACC), labeled
bracketing F1 score (Black et al. 1991), and their proposed

1http://fb.me/semanticparsingdialog



Model ACC F1 P R TL-F1 TL-P TL-R TV
RNNG (Dyer et al. 2016) 78.51 90.23 90.62 89.84 84.27 84.64 83.91 100.00
FAIRSEQ (Gehring et al. 2016) 75.87 88.56 89.25 87.88 82.31 82.92 81.72 99.75
S2S-LSTM (Wiseman and Rush 2016) 75.31 87.69 88.35 87.03 81.15 81.72 80.58 99.94
Transformer (Vaswani et al. 2017) 72.20 86.60 87.09 86.11 78.54 78.99 78.19 99.55
MatchLSTM* (Wang and Jiang 2015) 78.31 89.10 88.91 89.30 84.26 84.80 83.71 99.64
Ours
Generation 77.40 88.51 88.80 88.23 83.80 84.17 83.44 99.67
BERT* 80.15 89.52 89.70 89.34 85.02 85.43 84.61 99.63
GTCV* 82.51 90.79 90.87 90.71 88.01 88.40 87.62 99.78

Table 1: Performance (in percentage) of our proposed model and the state-of-the-art methods. * represents the reranking meth-
ods for semantic parsing.

metric Tree Label(TL) and Tree Validation(TV). The first
two metrics are commonly used in various semantic tasks.
In particular, TL is used to evaluate the subtree structures for
non-terminal tokens. TV represents the percentage of pre-
dictions that is formed valid trees via bracket matching.

For ATIS and JOBS datasets, we identify the entities and
numbers in the input questions and replace them with their
type names and unique IDs, which is the same as the prepro-
cessing in (Dong and Lapata 2016).

Results and Analysis on TOP
Table 1 shows the performance of our model and the state-
of-the-art methods. RNNG (Dyer et al. 2016) is a top-down
transition-based parser and was originally proposed for pars-
ing syntax trees and language modeling. FAIRSEQ (Gehring
et al. 2016) and S2S-LSTM (Wiseman and Rush 2016)
represent convolution based and LSTM based sequence to
sequence model for natural language generation. Trans-
former (Vaswani et al. 2017) is a recent popular generation
model based transformer blockers with multi-head attention
mechanism and has been applied on different tasks.These
results are reported in (Dyer et al. 2016) as compared base-
lines. “Generation” represents our generation model with-
out reranking. “MatchLSTM” represents using MatchLSTM
proposed in (Wang and Jiang 2015) as ranking model to
rerank the candidates. “BERT” denotes using BERT as our
ranking model. “GTCV” represents the model proposed in
this paper.

From the results, we observe that “GTCV” achieves state-
of-the-art performance among most metrics. Compared with
“Generation”, “GTCV” achieves about 5 points improve-
ment over accuracy which illustrates the effectiveness of
our reranking method. From the results of “MatchLSTM”,
“BERT” and “GTCV”, we see that “GTCV” achieves signif-
icantly performance improvement which demonstrates the
structure information is important for the reranking model.

To evaluate the contribution of each part, we conduct
an ablation experiment on TOP. Table 2 shows the results.
“w/o Verification” represents our model Without cross-
candidate verification. “w/o Graph” denotes our model with-
out graph information. Comparing the results of “GTCV”
“w/o Graph” and “w/o Verification”, we see that the graph
information and cross candidates verification proposed in

Methods ACC F1
Generation 77.40 88.51
BERT 80.15 89.52
GTCV 82.51 90.79

w/o Verification 81.16 90.02
w/o Graph Matching 81.26 90.06

Table 2: Ablation Experiment

this paper are effectiveness for the performance improve-
ment.

Method ACC
RNNG+Top 1 81.21
LM 82.80
SVM +LM ranker 84.26
Generation 79.82
GTCV 85.84

Table 3: In domain result.

Table 3 shows the results of our model on the subset
of TOP, which represents in-domain questions, proposed
in (Gupta et al. 2018). The baseline methods are pro-
posed in (Gupta et al. 2018), “RNNG+Top1” is a generation
method. “LM” and “SVM+LM ranker” are re-ranking meth-
ods. From the results of “RNNG+Top1” and “Generation”,
we observe that the performance of our generation model is
lower than “RNNG+Top1”, while “RNNG+Top1” requires
manually defined grammars. Our generation model is more
scalable which can be trained without any manually features.
In this work, we mainly focus on the reranking model. From
the results of “GTCV” and “SVM+LM ranker”, we observe
that even though the performance of our generation model
is lower than RNNG, our model “GTCV” achieves better
performance than “SVM+LM ranker”.

Parameter Analysis We range the beam size among
{1,2,3,5,10}, when the beam size is n, the model will gener-
ate n candidates, we compute the recall of these candidates.
Figure 3 shows the recall of different beam sizes. From the
results, we observe that the recall increase fast when the
beam size ranges from 1 to 5, while from 5 to 10, the growth
is slowed down, When the beam size equals to 10, We get
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above 92% recall. However the recall for beam size equals
to 1 is 77.4%. Thus, there exists a large improvement space
using reranking methods.
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To evaluate the robustness of our method, we run our
ranking model on different number of candidates. Figure 4
shows the results when the candidate number ranges in
{3,5,10}. We find that our model achieves improvement for
all these candidate numbers. Furthermore, when the candi-
date number is 3, since there are few candidates, the effec-
tiveness of the cross candidate verification mechanism is
reduced, while the graph-based matching mechanism still
achieves significantly performance improvement. We also
see that the effectiveness of cross candidate verification in-
creases with the number of candidate increasing.

Case Study Figure 5 shows some cases of top 1 results
ranked by GTCV and BERT. In the first case, we ob-
serve that the logical form selected by BERT has a branch
“SL:CATEGORY EVENT-the Franch market”, while “the
Franch market” is not a “CATEGORY EVENT”. Our model
GTCV considers the structure information and filters this
candidate. In the second case, we observe that the bold
branches selected by BERT are mismatch. The content of
the candidates selected by BERT and selected by our model
are the same, the difference is the structure information. We
use this case to illustrate that our model can better distin-
guish the candidate through structure information.

From the cases, we see that the candidates generated by
the generation model are often similar except the structure,
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Figure 5: Comparision of Top1 ranking examples in GTCV
and BERT

our graph based model captures the structure information,
and reranks the candidates better.

Results on ATIS and JOBS

JOBS ATIS
FUBL (Kwiatkowski et al. 2011) - 83.5
GUSP++ (Poon 2013) - 83.5
DCS+L (Liang, Jordan, and Klein 2013) 90.7 -
TISP (Zhao and Huang 2014) 85.0 84.2
Pointer Network (See, Liu, and Manning 2017) 86.7 83.4
seq2seq (Dong and Lapata 2016) 87.1 84.2
seq2tree (Dong and Lapata 2016) 90.1 84.6
ASN (Rabinovich, Stern, and Klein 2017) 91.4 85.3
ASN+SUP (Rabinovich, Stern, and Klein 2017) 92.9 85.9
Seq2Act (Chen, Sun, and Han 2018) - 85.5
Coarse2fine(Dong and Lapata 2018) - 87.7
MatchLSTM* (Wang and Jiang 2015) 90.1 82.8
Generation 89.3 82.4
BERT* 90.1 84.8
GTCV* 92.9 87.3

Table 4: Accuracy on JOBS and ATIS. * represents the
reranking methods for semantic parsing.

We also evaluate our method on the datasets, ATIS and
JOBS in Table 4. We observe that our GTCV model achieves
comparable result with the state-of-the-art methods, com-
pared with many existing methods. The accuracy of our



GTCV model obtains absolute improvements of 3.6% and
4.9% in both datasets, compared to the generation result.
Our model also outperforms MatchLSTM and BERT rank-
ing models. Furthermore, we find that our GTCV with the
basic sequence-to-sequence model achieves comparable re-
sult to state-of-the-art methods. Specially, since the two
datasets are small and the size of test set in jobs only
140, thus the slight improvement on the test set is not so
convinced. And the two datasets do not contain the com-
plex structure information as TOP. And Results on differ-
ent datasets demonstrate the robustness and effectiveness
of our ranking model, which is only based on the basic
sequence-to-sequence model without specific designed gen-
eration model. The experiments show that our approaches
can be on various datasets based on general sequence to se-
quence model and achieve good performance.

Related Work
Semantic Parsing
Various models have been proposed over the years for se-
mantic parsing (Kwiatkowski et al. 2011; Shao et al. 2019;
Reddy, Lapata, and Steedman 2014; Artzi and Zettlemoyer
2011; Xiao, Dymetman, and Gardent 2017; Yin and Neubig
2017). (Kwiatkowski et al. 2011) propose a combinatory
categorical grammar induction technique for semantic pars-
ing. (Xiao, Dymetman, and Gardent 2017; Yin and Neubig
2017) use syntax information to improve semantic parsing
models. (Reddy, Lapata, and Steedman 2014) try to build
semantic parsers without relying on logical form annotations
through distant supervision. With the rapid development of
deep learning models. Most of these transitional methods re-
quire experts to design features to represent and rank candi-
dates. Recently, neural semantic parsing methods (Dong and
Lapata 2016; Jia and Liang 2016; Chen, Sun, and Han 2018;
Dong and Lapata 2018) are proposed to train semantic
parsers in an end-to-end neural framework. (Dong and La-
pata 2016) proposes a SEQ2TREE model, which captures a
hierarchical structure of logical forms. (Guo and Gao 2017)
leverages a new attention mechanism to generate a more pre-
cise SQL. (Dong and Lapata 2018) proposes a hierarchical
decoding process, from coarse sketches to fine target logical
forms. On the TOP dataset, various generation model includ-
ing FAIRSEQ (Gehring et al. 2016), S2S-LSTM (Wiseman
and Rush 2016) and Transformer (Vaswani et al. 2017) are
used and reported as the baselines in (Gupta et al. 2018).

Graph-based Neural Network
Recently, graph-based neural network has become a hot re-
search topic. Researchers seek to capture more informa-
tion in graph structure data. SDNE(Wang, Cui, and Zhu
2016) uses finding proper node embedding to reconstruct its
neighborhood as part of its objective function. GCN(Kipf
and Welling 2016) iteratively aggregates neighbor informa-
tion from previous layers with a defined convolution opera-
tor. GAN(Veličković et al. 2017) leverages attention mech-
anisms to focus on the most relevant information by attend-
ing over nodes’ neighborhood. Structure information also

helps neural semantic parsing, SEQ2TREE (Dong and La-
pata 2016) uses a hierarchical tree decoder to model the
compositional nature of meaning representations in logical
forms. In (Xu et al. 2018), researchers propose a graph-to-
sequence model that uses the graph to represent syntactic
information of word order, dependency and constituency.

Conclusion
In this paper, we propose a Graph-based Transformer model
for semantic parsing. The model captures the hierarchical
structure information of logical forms. To make each can-
didate interact with other candidates, we also incorporate a
cross-candidate verification mechanism into our model. Fur-
ther, with the Graph-based Transformer model, we build a
generator + ranking pipeline. Experimental results on 3 se-
mantic parsing datasets ATIS, JOBS and TOP show the ef-
fectiveness and robustness of our model.
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