微软研究峰会2021 | 讲座:可解释性学习
日期
2021-12-14
演讲者
新加坡南洋理工大学助理教授张含望, 微软亚洲研究院主管研究员王玉旺, 挪威北极圈大学Shujian Yu
左侧概览
One of the critical shortcomings of big data-driven deep learning is its black-box nature. To help resolve this, it’s important to develop architectures and algorithms that can capture the fundamentals of how humans learn and infer. Join Professor Hanwang Zhang from Nanyang Technological University in Singapore, Microsoft Senior Researcher Yuwang Wang, and Professor Shujian Yu from the Arctic University of Norway as they share their work and insights on how to achieve interpretable learning by leveraging representation disentanglement and information theory. You’ll learn about these powerful concepts and discover how they help address interpretability and generalization in deep learning.
Learn more about the 2021 Microsoft Research Summit: https://Aka.ms/researchsummit