新闻中心

排序方式

EMNLP 2021 | 微软亚洲研究院NLP领域最新研究一览

编者按:EMNLP(Conference on Empirical Methods in Natural Language Processing)是计算语言学和自然语言处理领域的顶级国际学术会议。今年的 EMNLP 大会于11月7日-11日正式在线上召开。在本届大会中,微软亚洲研究院有多篇论文入选,今天我们精选了其中的6篇来为大家进行简要介绍。欢迎感兴趣的读者阅读论文原文,一起了解自然语言处理领域的前沿进展!

发布时间:2021-11-09 类型:深度文章

EMNLP 2021 | LayoutReader:基于ReadingBank的阅读序列抽取模型

阅读序列抽取是文档智能分析中一项非常重要的任务,其旨在通过抽取扫描文档或数字商业文档中的单词并重新进行排序,将原本独立的单词组合成读者可以理解的文本。但由于日常工作生活中使用的文档,往往模板和格式各不相同,所以在出现复杂格式时,按照传统方法进行排列往往无法取得较好的效果。因此,微软亚洲研究院自然语言计算组的研究员们构建了首个大规模阅读序列数据集 ReadingBank,并基于 ReadingBank 提出了阅读序列抽取模型 LayoutReader。本文将对 ReadingBank 和 LayoutReader 的实现原理进行简要介绍,欢迎感兴趣的读者点击阅读原文了解论文中的更多详情,本文已被 EMNLP 2021 作为长文录取。

发布时间:2021-11-04 类型:深度文章

精心设计的 GNN 只是“计数器”?

问答(QA)任务是自然语言理解领域中一个基本且重要的课题,目前通常会使用预训练语言模型以及图神经网络等方法对问答进行推理。GNN 模块在推理中到底发挥了什么作用?这个问题需要科研人员做进一步深入探究。为此,微软亚洲研究院和佐治亚理工的研究员们剖析了最前沿的相关方法,并且发现一种极其简单、高效的图神经计数器就能在主流的知识问答数据集中取得更好的效果。

发布时间:2021-10-29 类型:深度文章

Forerunner:首个面向“多未来”的推测执行技术

10月26-29日,系统领域的全球顶会 SOSP 2021 在线上举办。在本届大会上,微软亚洲研究院研究员陈洋、郭众鑫、李润怀(实习生,浙江大学)、陈硕、周礼栋、张宪以及浙江大学周亚金教授共同提出了一种新颖的基于约束的推测执行技术——Forerunner,这是第一个面向“多未来”的推测执行技术。本篇论文获得了 Artifact Evaluation 全部三个最高级别徽章(即代码可评估、代码可获取和实验结果可复制)。今天将为大家从这项研究的底层思路和逻辑进行梳理总结。

发布时间:2021-10-28 类型:深度文章

对话Satya Nadella:新的系统架构、大规模AI模型、人机界面或将迎来大突破

在首届微软研究峰会的第二天,微软公司董事长兼首席执行官萨提亚·纳德拉(Satya Nadella)和微软公司首席技术官凯文·斯科特(Kevin Scott)展开了一场精彩的对话,探讨了未来十年及以后的计算机科学研究发展趋势,以及如何利用变革性的技术突破来解决世界性难题。

发布时间:2021-10-25 类型:深度文章

2021年“微软学者”奖学金亚洲地区11人名单公布!

2021年“微软学者”奖学金共吸引了来自全亚洲50所顶尖研究型大学及机构的157名优秀博士生申请,申请者的研究领域广泛分布于计算科学、硬件与软件系统、人类与机器智能,及感知、识别与交互等领域。经过重重筛选,来自亚洲地区的11名优秀博士生最终被授予2021年“微软学者”称号,另有17名博士生获得提名奖。

发布时间:2021-10-22 类型:深度文章

Peter Lee:从“无用知识的有用性”看科学研究背后的永恒原则

在微软研究院成立30周年之际,微软全球八大研究院携手打造了首届微软研究峰会。昨天,在大会的第一天,微软全球资深副总裁、微软研究院负责人 Peter Lee 发表了主题为《二十一世纪的产业研究》的演讲,就上述问题分享了他的观察和感悟,并且与微软研究院创始人 Rick Rashid 共同探讨了微软研究院下一步发展的方向。

发布时间:2021-10-20 类型:深度文章

微软翻译突破百种语言和方言大关

近日,微软翻译再添12种新语言和方言,其中就包括由微软亚洲研究院提供技术支持的维语、 蒙语、藏语、土库曼语、乌兹别克语等。目前,微软翻译共支持103种语言,让你轻松实现跨国、跨地区交流无障碍。

发布时间:2021-10-15 类型:深度文章

ICCV 2021 | 带你了解微软亚洲研究院CV领域前沿进展

2021年计算机视觉领域顶级会议 ICCV 于10月11日至17日在线上正式召开。此次大会共收到6236篇投稿,其中1617篇论文被接收,接收率为25.9%。在本届会议中,来自微软亚洲研究院的论文“Swin Transformer: Hierarchical Vision Transformer using Shifted Windows”荣获最佳论文奖(Marr Prize)。此外,微软亚洲研究院还有多篇优秀论文入选,今天我们精选了其中的6篇来为大家进行简要介绍。

发布时间:2021-10-13 类型:深度文章

TrOCR:基于Transformer的新一代光学字符识别

很长一段时间以来,文本识别一直都是一个重要的关于文档数字化的研究课题。现有的文本识别方法通常采用 CNN 网络进行图像理解,采用 RNN 网络进行字符级别的文本生成。但是该方法需要额外附加语言模型来作为后处理步骤,以提高识别的准确率。为此,微软亚洲研究院的研究员们展开了深入研究,提出了首个利用预训练模型的端到端基于 Transformer 的文本识别 OCR 模型:TrOCR。该模型简单有效,可以使用大规模合成数据进行预训练,并且能够在人工标注的数据上进行微调。实验证明,TrOCR 在打印数据和手写数据上均超过了当前最先进的模型。训练代码和模型现已开源。希望感兴趣的读者可以阅读全文,了解 TrOCR 的优势所在!

发布时间:2021-10-12 类型:深度文章