新闻中心

排序方式

AAAI 2020 | 时间可以是二维的吗?基于二维时间图的视频内容片段检测

当时间从一维走向二维,时序信息处理问题中一种全新的建模思路由此产生。根据这种新思路及其产生的二维时间图概念,微软亚洲研究院提出一种新的解决时间定位问题的通用方法:二维时域邻近网络 2D-TAN,在基于自然语言描述的视频内容定位和视频内人体动作检测两个任务上验证了其有效性,并在 ICCV 2019 中的 HACS Action Localization Challenge 比赛中获得了第一,相关技术细节将发表于 AAAI 2020 论文“Learning 2D Temporal Adjacent Network for Moment Localization with Natural Language”。本文将对这一研究进行深入解读。

发布时间:2019-12-16 类型:深度文章

NeurIPS 2019 | 全参数化分布,提升强化学习中的收益分布拟合能力

强化学习正在游戏领域中被广泛应用,其中基于分布拟合的强化学习算法是目前性能最好的一类方法。在这类方法中,如何参数化收益分布是算法设计的核心问题。现有的参数化方法在对累积概率分布进行拟合的时候,往往是选择固定的分位点概率或者随机采样的分位点概率。但是不同分位点概率带来的拟合误差往往差别很大。为了更好的拟合收益分布,微软亚洲研究院提出了可自适应的累积分布分位点概率,可以找出对于拟合累积分布函数最关键的几个分位点概率,实现了全参数化的分位函数,大大提升了对收益分布的拟合能力。

发布时间:2019-12-10 类型:深度文章

NeurlPS 2019丨微软亚洲研究院精选论文解读

NeurlPS 2019 正于12月8-14日在加拿大温哥华举行。微软亚洲研究院有11篇论文入选本届 NeurlPS,内容涵盖社交网络影响力最大化、奖励分解、语音合成、机器翻译等多个前沿主题。本文将为大家介绍其中的5篇论文。

发布时间:2019-12-09 类型:深度文章

NeurIPS 2019丨推敲网络+soft原型序列,带来轻便又精准的机器翻译

机器翻译模型生成序列通常采用单阶段解码过程,不能很好地应用目标端的全局信息。微软亚洲研究院提出了一个引入 soft 原型序列的框架来充分利用目标端的全局信息,让基于推敲网络[1]的机器翻译模型在精度无损的情况下模型更小,速度更快,翻译结果更准确。

发布时间:2019-12-04 类型:深度文章

NeurIPS 2019丨是呆头伯劳鸟还是南灰伯劳鸟?深度双线性转换帮AI准确区分

双线性特征在学习细粒度图像表达上效果很好,但计算量极大,无法在深层的神经网络中被多次使用。因此,微软亚洲研究院设计了一种深度双线性转换模块,能够深层地将双线性表达应用在卷积神经网络中,来学习细粒度图像特征。这项工作发表在了 NeurIPS 2019 上。

发布时间:2019-12-03 类型:深度文章

AAAI 2020丨沟壑易填:端到端语音翻译中预训练和微调的衔接方法

编者按:在端到端的语音翻译中,虽然预训练配合微调的方法被广泛使用,但两个环节尚且不能很好地进行衔接。微软亚洲研究院提出串联编码网络(Tandem Connectionist Encoding Network, TCEN),使参与语音翻译任务的每个子网络都能够被预训练,且预训练中学到的参数都将在微调过程中使用,从而显著提升语音翻译模型性能。

发布时间:2019-11-25 类型:深度文章

AAAI 2020丨从嘈杂视频中提取超清人声,语音增强模型PHASEN已加入微软视频服务

在刚刚落幕的 Ignite 大会上,微软展示了企业视频服务 Microsoft Stream 中的一项新功能——无论你在多么嘈杂的地方录制视频,Microsoft Stream 都能自动过滤背景噪音,让主要语音超清晰地呈现出来。这一技术由微软亚洲研究院与 Microsoft Stream 团队共同研发,研究团队提出了关注相位和谐波的语音增强模型 PHASEN,通过双流结构让降噪效果大幅超过此前方法。该论文已被 AAAI 2020 接收。

发布时间:2019-11-13 类型:深度文章

EMNLP 2019 | 大规模利用单语数据提升神经机器翻译

目前,目标语言端的无标注单语数据已被广泛应用于在机器翻译任务中。然而,目标语言端的无标注数据一旦使用不当,反而会给模型结果带来负面影响。为了有效利用大规模源语言端和目标语言端的单语数据,微软亚洲研究院在 EMNLP 2019 上发表的论文中,提出一种简单的语料数据使用流程,只需要四个步骤就能极大地提高模型翻译结果。

发布时间:2019-11-12 类型:深度文章

EMNLP 2019 | 基于层次化注意力图网络和多视角学习的商品推荐

在电子商务的发展中,个性化推荐技术对于提升平台运营水平、商户营收以及用户购物体验都发挥着至关重要的作用。精进这一技术的关键在于准确有效的用户和商品表示与交互。微软亚洲研究院在 EMNLP 2019 上提出了一种基于层次化注意力图网络增强用户和商品表示的个性化推荐方法 RMG,可以有效结合商品评论以及用户-商品图信息。

发布时间:2019-11-11 类型:深度文章

EMNLP 2019丨微软提出显式跨语言预训练模型CMLM,显著提升无监督机器翻译性能

现有预训练模型的跨语言信息只通过共享 BPE 空间得到,这样得到的跨语言信号隐式而且受限。微软亚洲研究院提出了一种跨语言掩码语言模型(Cross-lingual masked language model,CMLM),可以显式地将跨语言信息作为训练信号,显著提升预训练模型的跨语言建模能力,进而提升无监督机器翻译的性能。

发布时间:2019-11-07 类型:深度文章