新闻中心

排序方式

OSDI 2020 | RAMMER如何进一步“压榨”加速器性能

传统的深度学习框架为了模块化设计,通常使用互不感知的两层调度模型,导致无法充分发挥硬件的计算性能。针对现有深度学习框架的局限,微软亚洲研究院和北京大学、上海科技大学合作提出了 RAMMER:一种可以成倍甚至几十倍地提升深度学习计算速度的编译框架。这套编译框架的背后是微软亚洲研究院打造的深度神经网络编译器 NNFusion,目前已在 GitHub 上开源。

发布时间:2020-11-12 类型:深度文章

OSDI 2020 | 微软亚洲研究院论文一览

OSDI 是计算机系统软件领域全球最顶级的会议之一,每两年举办一届,被誉为“操作系统原理领域的奥斯卡”,拥有极高的学术地位。第14届 OSDI 将于2020年11月4日至6日召开。此次会议投稿398篇,共录用论文70篇,录用率不足18%。本文中,我们将为大家介绍微软亚洲研究院被录取的6篇论文。

发布时间:2020-11-03 类型:深度文章

设计与构建下一代的计算机系统:学习增强系统

我们生活中依赖的搜索、购物、聊天和新闻推荐等各种服务都离不开大型软件系统的支持,然而,随着用户的需求和场景增多,这些系统的复杂性和规模也在不断增加。如何利用机器学习和大数据来驱动复杂的系统设计和运维决策,成为了学术界和工业界共同思考的问题。针对这个问题提出的解决方案,被称为学习增强系统(Learning-augmented Systems)。最近几年,微软亚洲研究院通过名为 AutoSys 的研究项目,在探索系统化建构学习增强系统上取得了进展。

发布时间:2020-10-27 类型:深度文章

2019盘点:机器学习更亲民,AI系统更精巧

本文与大家分享的是2019年机器学习和系统领域的突破与进展,以及未来趋势。如果说机器学习可以算是 AI 的大脑,那么系统网络就像 AI 的身体躯干。AI 的进一步普及,需要对机器学习算法、模型、理论等进行不断地优化和提炼,同时也需要能够构建出高效、稳定、可信乃至“精巧”的 AI 系统,为 AI 应用的真正落地做好诸多准备。

发布时间:2020-01-06 类型:深度文章