新闻中心

排序方式

用AI打开生物学研究的另一扇窗

在生物学研究领域,传统基于分子、细胞、生理学实验方法进行的研究通常被称作湿实验,如今这些传统的生物学方法在某种程度上都遇到了瓶颈,而被称作干实验的计算机模拟和生物学相结合的研究,正在利用 AI、大数据等创新手段,为生物学研究打开了另一扇窗。今天就让我们一起来看一看三位在微软亚洲研究院从事计算生物学研究的研究员的跨界经历。

发布时间:2021-01-15 类型:人物

新一代多模态文档理解预训练模型LayoutLM 2.0,多项任务取得新突破!

近年来,预训练模型是深度学习领域中被广泛应用的一项技术,对于自然语言处理和计算机视觉等领域的发展影响深远。2020年初,微软亚洲研究院的研究人员提出并开源了通用文档理解预训练模型 LayoutLM 1.0,受到了广泛关注和认可。如今,研究人员又提出了新一代的文档理解预训练模型 LayoutLM 2.0,该模型在一系列文档理解任务中都表现出色,并在多项任务中取得了新的突破,登顶 SROIE 和 DocVQA 两项文档理解任务的排行榜(Leaderboard)。未来,以多模态预训练为代表的智能文档理解技术将在更多的实际应用场景中扮演更为重要的角色。

发布时间:2021-01-13 类型:深度文章

带你读论文 | 值分布强化学习

值分布强化学习(Distributional Reinforcement Learning)是一类基于价值的强化学习算法,也是一类新兴的强化学习方法。该方法达到了非分布式强化学习方法上新的基准性能,也与神经科学有着内在联系,因此具有很高的研究价值。本文将带大家一起选读多个近期值分布强化学习相关的研究工作,这些工作的发展脉络清晰、研究动机明确,为后续的进一步研究提供了重要参考。

发布时间:2021-01-08 类型:深度文章

GLGE:业界首个通用语言生成评估基准

最近,除了针对自然语言理解(NLU)任务设计的预训练语言模型,许多针对自然语言生成(NLG)任务而设计的预训练语言模型也被不断提出。然而,这些模型往往通过不同的任务、数据集、和评测指标进行评估,目前还没有一个统一的通用评测基准。为了填补 NLG 通用评测基准这一空缺,微软亚洲研究院提出了业内首个通用的语言生成评测基准 GLGE (General Language Generation Evaluation benchmark)。GLGE 提供了三种不同难度的的评测基准,以方便研究者们更全面或更有选择性地对模型进行评估。

发布时间:2021-01-06 类型:深度文章

微软亚洲研究院2020技术精选集

不平凡的2020年即将结束。在这个回顾过去、展望未来的时刻,微软亚洲研究院推出了2020年度技术精选专辑。先让我们一起通过专辑的 “MV”,来看一下这张技术精选集都收录了哪些黑科技。

发布时间:2020-12-30 类型:深度文章

基于Transformer的高效、低延时、流式语音识别模型

Transformer 模型在自然语言领域被提出后,目前已经扩展到了计算机视觉、语音等诸多领域。然而,虽然 Transformer 模型在语音识别领域有着更好的准确率,但在流式的语音识别场景下,Transformer 模型的速度和延时往往阻碍其实际的应用。为了解决这个问题,微软 Azure 语音团队与微软亚洲研究院的研究员们一起提出了一套结合 Transformer 家族的编码器和流式 Transducer 框架的解决方案,并提出了 Mask is all you need 的方法对模型进行快速训练以及解码,让 Transformer 模型能够在普通的计算设备上进行快速的语音识别。

发布时间:2020-12-30 类型:深度文章