新闻中心

排序方式

ACL 2022 | NLP领域最新热门研究,你一定不能错过!

编者按:作为自然语言处理领域的国际顶级学术会议,ACL 每年都吸引了大量学者投稿和参会,今年的 ACL 大会将于5月22日至5月27日举办。值得注意的是,这也是 ACL 大会采用 ACL Rolling Review 机制后的首次尝试。在此次会议中,微软亚洲研究院有多篇论文入选,本文精选了其中的6篇进行简要介绍,论文主题涵盖了:编码器解码器框架、自然语言生成、知识神经元、抽取式文本摘要、预训练语言模型、零样本神经机器翻译等。欢迎感兴趣的读者阅读论文原文。

发布时间:2022-05-19 类型:深度文章

3D视频会议系统VirtualCube:相隔万里也如近在咫尺般身临其境

编者按:常言道:“眼睛是心灵的窗户”,眼神交流所传达的信息也可以进一步提升人们的沟通效果。然而,随着视频聊天、视频会议逐渐成为常态,大家不禁要问,我们有多久没有与同事、朋友、家人确认过眼神了?

发布时间:2022-05-18 类型:深度文章

非自回归生成研究最新综述,近200篇文献揭示挑战和未来方向

编者按:近年来,由于并行的快速推理能力,非自回归生成在自然语言处理、语音处理等领域展示出了其特有的优势,并日益成为生成模型的研究热点。为了促进非自回归生成模型的发展,微软亚洲研究院与苏州大学的研究员们共同撰写了综述论文“A Survey on Non-Autoregressive Generation for Neural Machine Translation and Beyond”,回顾了非自回归生成在神经机器翻译以及其他任务中的发展,并对非自回归生成的未来提出了展望。

发布时间:2022-05-13 类型:深度文章

ICLR 2022 | 微软亚洲研究院深度学习领域最新研究成果一览

编者按:ICLR(International Conference on Learning Representations)是国际公认的深度学习领域顶级会议之一,众多在人工智能、统计和数据科学领域以及计算机视觉、语音识别、文本理解等重要应用领域极其有影响力的论文都发表在该大会上。今年的 ICLR 大会于4月25日至29日在线上举办。本届大会共接收论文1095篇,论文接收率32.3%。今天,我们精选了其中的六篇来为大家进行简要介绍,其中研究主题的关键词包括时间序列、策略优化、解耦表示学习、采样方法、强化学习等。欢迎感兴趣的读者阅读论文原文,一起了解深度学习领域的前沿进展!

发布时间:2022-04-26 类型:深度文章

WWW 2022 | 一文解读互联网技术国际顶会最新方向

编者按:国际万维网会议(Proceedings of the ACM Web Conference,简称 WWW)是互联网技术领域最重要的国际会议之一。今年的 WWW 将于4月25-29日在法国里昂以线上会议的形式召开。本届会议共收到了1822篇长文投稿,论文录用率为17.7%,微软亚洲研究院也有多篇论文入选。今天我们为大家精选了其中的六篇进行简要介绍,研究主题关键词包括个性化新闻推荐、图异配性建模、多层推荐推理、日志解析、基于因果学习的可解释推荐、增量推荐算法等,欢迎感兴趣的读者阅读论文原文,一起了解互联网技术领域的前沿进展!

发布时间:2022-04-19 类型:深度文章

如何亿点点降低语音识别跨领域、跨语种迁移难度?

编者按:随着深度学习的不断发展,语音识别技术得到了极大的提升,同时为人们的日常生活提供了许多便利。然而,一个语音模型的训练并非易事,因为语音数据天然存在着获取难、数据标注耗时昂贵的问题,而且还会面临模型漂移、标注数据不足等难题。因此,迁移学习技术对于语音数据非常重要。为了解决语音识别的跨领域和跨语言问题,微软亚洲研究院机器学习组和微软(亚洲)互联网工程院提出了跨领域和跨语言语音识别的 CMatch 和 Adapter 方法。这两项技术是如何提升模型迁移学习性能的?他们又利用了哪些创新技术?让我们从今天的文章中来获得答案吧。

发布时间:2022-03-31 类型:深度文章

如何将学术经历整合为求职简历?CS求职必备的5个小技巧

走出校园初次求职,表述简洁的职位要求或许会让你一头雾水,不知从何下手。如何将你的学术经历“翻译”为适用于产业界招聘的语言?这篇微软研究员 Alaina Talboy 博士的手记将手把手教你读懂招聘潜台词,并将自己的经历进行精确匹配。

发布时间:2022-03-31 类型:深度文章

语音识别的快速纠错模型FastCorrect系列来了!

编者按:语音识别支持着许多生活中的常见服务,比如手机端的语音转文字功能、视频网站的字幕自动生成等等。但语音识别模型往往并不完美,需要纠错模型来纠正语音识别中的错误。目前,大部分纠错模型采用了基于注意力机制的自回归模型结构,虽然能够提升语音识别的准确率,但是延迟较高,这也成为了纠错模型在实际应用中的瓶颈。一个直接的做法是利用非自回归模型来提升速度,但是简单利用当前的非自回归模型不能降低错误率。为此,微软亚洲研究院机器学习组与微软 Azure 语音团队合作,推出了 FastCorrect 系列工作,提出了低延迟的纠错模型,相关研究论文已被 NeurIPS 2021 和 EMNLP 2021 收录。

发布时间:2022-03-22 类型:深度文章

微软发布量子计算最新成果,证实拓扑量子比特的物理机理

编者按:量子计算有望帮助我们解决人类所面临的一些最严峻的挑战。然而,在这个新生领域,我们仍处于发展的早期阶段。目前,在量子计算机的帮助下,研究人员已经能够开展一些有趣的研究项目,但他们仍然受制于系统规模的不足,无法开展更多研究。现有的量子计算机所依赖的量子比特有很多类型,但迄今为止还没有哪一类能够扩展到足够多的量子比特,以充分发挥量子计算的潜力。

发布时间:2022-03-18 类型:深度文章

Swin Transformer迎来30亿参数的v2.0,我们应该拥抱视觉大模型吗?

编者按:2021年,获得 ICCV 最佳论文奖的 Swin Transformer,通过在广泛的视觉问题上证明 Transformer 架构的有效性,加速了计算机视觉领域基本模型架构的变革。2021年末,微软亚洲研究院的研究员们又进一步提出了 Swin Transformer v2.0 版本,新版本训练了迄今为止最大的稠密视觉模型,并在多个主流视觉任务上大大刷新了记录,相关论文也已被 CVPR 2022 接收。研究员们希望借助 Swin Transformer v2.0 展现视觉大模型的“强悍”能力,呼吁整个领域加大对视觉大模型的投入,并为之提供相应的训练“配方”,从而为视觉领域的科研人员做进一步探索提供便利。那么,Swin Transformer v2.0 有哪些不同?今天就让我们来一探究竟吧!

发布时间:2022-03-17 类型:深度文章