新闻中心

排序方式

NeurIPS 2021 | 一文洞悉因果机器学习前沿进展

编者按:近年来,因果机器学习在人工智能和诸多交叉领域产生了卓越的影响,得到了越来越多的关注。借助因果关系推理,机器学习的鲁棒性、泛化能力、可解释性等方面都将得到有效提升。今天我们精选了三篇微软亚洲研究院关于因果机器学习的 NeurIPS 2021 论文,为大家介绍该领域的最新科研进展。论文内容涵盖:在单源域泛化预测、多源域泛化预测,以及模仿学习三类任务中学习因果关系的方法和理论,并展示了利用因果关系提高模型在环境和分布发生变化时的稳健性。未来,微软亚洲研究院将进一步推进机器学习方法在更多更严苛的现实任务上的应用。

发布时间:2021-12-02 类型:深度文章

NeurIPS 2021 | 物体检测与分割的零标签视觉学习

编者按:随着自监督学习的研究逐步深入,迁移学习的范式已经广泛应用于视觉学习的各个领域,大量的视觉任务都通过使用自监督预训练和有监督微调的方式来部署任务。而微软亚洲研究院的研究员们希望打破这一范式,在 NeurIPS 2021 发表的论文中,研究员们提出了一个可以从无标签视频中学习物体检测和分割的模型,使得自监督预训练模型可以直接服务于应用,而不需要任何有监督微调,实现了零标签的学习。

发布时间:2021-12-01 类型:深度文章

NeurIPS 2021 | 从残差编码到条件编码,构建基于上下文的视频压缩框架DCVC

编者按:传统视频压缩方法多采用残差编码框架,虽简单有效但却并不是最优解,其熵往往大于或等于条件编码的熵。通过从残差编码到条件编码的转换,微软亚洲研究院多媒体计算组的研究员们构建了一种基于上下文的视频压缩框架(DCVC),为基于深度学习的视频压缩提供了新思路和新方法。实验表明,该视频压缩框架比常用的残差编码框架有更低的信息熵下界,且能够自适应学习帧内编码和帧间编码,适用于对高频细节的恢复。作为一种可拓展性非常强的框架,DCVC 也将在未来继续发挥其强大的压缩性能。相关论文已被 NeurIPS 2021 接收。

发布时间:2021-12-01 类型:深度文章

NeurIPS 2021 | CyGen:基于概率论理论的生成式建模新模式

编者按:在概率论中,两随机变量的一个联合分布可由一个变量的边缘分布和对应条件分布确定,也可对称地由另一变量的边缘分布和另一方向的条件分布确定,但无法由这两个边缘分布确定。因此,可否仅由这两个条件分布来确定联合分布,成为了科研人员感兴趣的研究方向。

发布时间:2021-11-26 类型:深度文章

智能文档新成员:动态文档智能模型MarkupLM

编者按:自2019年以来,微软亚洲研究院在“智能文档”领域进行了诸多探索,提出了通用文档理解预训练模型 LayoutLM,以及多语言通用文档理解预训练模型 LayoutXLM。然而,除了诸多视觉效果固定不变的文档外,现实中还存在大量实时渲染的动态视觉富文本文档,直接套用过去如 LayoutLM 系列模型中采用的基于二维空间坐标的布局编码对动态文档进行建模是不现实的。为此,微软亚洲研究院的研究员们开发了一种全新模型 MarkupLM,可直接对动态文档的标记语言源代码进行处理,不需要任何额外的计算资源即可渲染生成动态文档的实际视觉效果。实验结果表明,MarkupLM 显著优于过去基于网页布局的方法,且具有高实用性。

发布时间:2021-11-25 类型:深度文章

微软亚洲研究院发布高性能MoE库Tutel,为大规模DNN模型开发提速!

编者按:作为目前唯一被证明能够将深度学习模型扩展到万亿以上参数的方法,MoE 能让模型学习更多信息,并为计算机视觉、语音识别、自然语言处理和机器翻译系统等提供支持。近期,微软亚洲研究院发布了一个高性能 MoE 库——Tutel,并在 8x 80GB NVIDIA A100 和 8x 200Gbps 的 InfiniBand 网络的 Azure NDm A100 v4 节点上进行了实验。让我们来看一看,这个用于促进大规模 DNN 模型开发的高性能 MoE 库有哪些优势?其表现又如何?

发布时间:2021-11-24 类型:深度文章

NTD的深度研究,为厘清新冠病毒机理提供新方向!

编者按:由严重急性呼吸综合征冠状病毒2(SARS-CoV-2)引起的新冠病毒 COVID-19 席卷全球,对人们的生命健康带来了严重的损害。全球的科学家团队自疫情爆发开始,就一直在对该病毒的传染源、毒株、侵染机理等方面展开全面的研究。在此期间,微软亚洲研究院和清华大学生命科学学院的科研人员深度合作交流,利用强大的计算平台和改进的分子动力学模拟算法,研究了新冠病毒关键结构域 NTD 对于 S 蛋白构象转变和病毒侵染的机理。

发布时间:2021-11-24 类型:深度文章

MobiCom 2021 | Remix:面向边缘设备且可调谐的高分辨率目标检测技术

编者按:目标检测技术在视频分析系统中是十分基础的功能模块,在许多视频分析场景中,若可以在边缘设备上直接运行目标检测模型,可极大提升检测效率,同时也可以降低使用成本。但是,如何在边缘设备运行计算密集的 DNN,以及降低在边缘设备进行检测时的推理延迟,成为了相关领域工作者们重点研究的方向。

发布时间:2021-11-17 类型:深度文章

科学时代,我们需要怎样的科学家与科研机构?

编者按:近期,在微软首席技术官 Kevin Scott 主持的播客节目《科技探秘》中, Kevin 与微软全球资深副总裁、微软研究院负责人 Peter Lee 展开了一场精彩的对话。

发布时间:2021-11-12 类型:深度文章

EMNLP 2021 | 微软亚洲研究院NLP领域最新研究一览

编者按:EMNLP(Conference on Empirical Methods in Natural Language Processing)是计算语言学和自然语言处理领域的顶级国际学术会议。今年的 EMNLP 大会于11月7日-11日正式在线上召开。在本届大会中,微软亚洲研究院有多篇论文入选,今天我们精选了其中的6篇来为大家进行简要介绍。欢迎感兴趣的读者阅读论文原文,一起了解自然语言处理领域的前沿进展!

发布时间:2021-11-09 类型:深度文章