Swin Transformer迎来30亿参数的v2.0,我们应该拥抱视觉大模型吗?
编者按:2021年,获得 ICCV 最佳论文奖的 Swin Transformer,通过在广泛的视觉问题上证明 Transformer 架构的有效性,加速了计算机视觉领域基本模型架构的变革。2021年末,微软亚洲研究院的研究员们又进一步提出了 Swin Transformer v2.0 版本,新版本训练了迄今为止最大的稠密视觉模型,并在多个主流视觉任务上大大刷新了记录,相关论文也已被 CVPR 2022 接收。研究员们希望借助 Swin Transformer v2.0 展现视觉大模型的“强悍”能力,呼吁整个领域加大对视觉大模型的投入,并为之提供相应的训练“配方”,从而为视觉领域的科研人员做进一步探索提供便利。那么,Swin Transformer v2.0 有哪些不同?今天就让我们来一探究竟吧!
发布时间:2022-03-17 类型:深度文章