新闻中心

排序方式

ICML 2021 | 微软亚洲研究院精选论文一览

第三十八届机器学习国际会议 ICML 2021 于7月18日在线上举行,今年的 ICML 会议一共接收了1184篇论文,接收率接近21.5%。其中微软亚洲研究院有多篇论文入选,今天我们精选了5篇为大家进行介绍。这5个工作的研究主题关键词包括数据采样、Transformer、序列学习、神经网络、语音识别等。欢迎感兴趣的读者阅读论文原文。

发布时间:2021-07-23 类型:深度文章

R-Drop:填补Dropout缺陷,简单又有效的正则方法

深度神经网络是深度学习的基础,但其在训练模型时会出现过拟合的问题,而简单易用的 Dropout 正则化技术可以防止这种问题的发生。然而 Dropout 的操作在一定程度上会使得训练后的模型成为一种多个子模型的组合约束。基于此,微软亚洲研究院与苏州大学提出了更加简单有效的正则方法 R-Drop(Regularized Dropout)。实验表明,R-Drop 在5个常用的包含 NLP(自然语言处理) 和 CV(计算机视觉) 的任务中都取得了当前最优的结果。本文将介绍 R-Drop 的实施方法、作用与效果,让大家一窥 R-Drop 的玄机。

发布时间:2021-07-21 类型:深度文章

谭旭:AI音乐,技术与艺术的碰撞

日前,在2021全球人工智能技术大会(GAITC)的“当 AI 与艺术相遇”专题论坛上,微软亚洲研究院主管研究员谭旭发表了题为《基于深度学习的流行音乐创作》的演讲。该分享从分析流行音乐的工业化制作流程切入,介绍了深度学习是如何辅助流行音乐的创作,微软亚洲研究院在 AI 音乐创作领域的一系列研究成果,以及当前AI音乐生成所面临的研究挑战等。本文为此次演讲内容的完整整理,希望可以给大家在AI与艺术相互结合的研究方向上带来更多启发。

发布时间:2021-07-20 类型:深度文章

KDD Cup 2021 | 微软亚洲研究院Graphormer模型荣登OGB-LSC图预测赛道榜首

在刚刚结束的由 KDD Cup 2021 和 Open Graph Benchmark 官方联合举办的第一届 OGB Large-Scale Challenge 中,来自微软亚洲研究院的研究员和大连理工大学等高校的实习生们通过借鉴 Transformer 模型的思路,创新性地提出了可应用于图结构数据的 Graphormer 模型,在大规模分子性质预测任务中击败了全球包括 DeepMind 在内的多个技术实力强劲的公司和研究机构,取得了第一名的佳绩。

发布时间:2021-06-20 类型:深度文章

机器学习隐私研究新进展:数据增强风险被低估,新算法“降服”维数依赖

如今,数据是推动人工智能创新的核心要素。但数据的安全和隐私问题限制了数据充分释放其潜能。一直以来,微软都倡导打造负责任的人工智能,并正在开发和利用多种技术以提供更强大的隐私保护、确保数据安全。本文将为大家介绍微软亚洲研究院在机器学习隐私研究的最新进展,以及讨论在深度学习中的隐私攻击与保护。

发布时间:2021-03-04 类型:深度文章

AAAI 2021 | 微软与上交大最新研究,强化学习助力AI+金融

随着近年来深度强化学习技术的发展,学术界提出了一些利用深度强化学习解决订单执行问题的方法。微软亚洲研究院与上海交通大学合作在 AI+ 金融领域的最新研究工作《Universal Trading for Order Execution with Oracle Policy Distillation》就是利用了强化学习技术,来尝试优化金融市场交易中订单执行(Order Execution)的问题。该工作已被 AAAI 2021 接收。

发布时间:2021-01-29 类型:深度文章

快速上手微软 “群策 MARO” 平台,打造简易的共享单车场景

2020年9月,微软亚洲研究院发布了多智能体资源优化平台“群策 MARO”,并在 Github 上开源。近日,MARO 更新了0.2版本,新版本进一步完善了多项功能,提升了使用体验。作为一个面向多行业横截面上的全链条资源优化 AI 解决方案,MARO 平台可支持多种预设定的资源优化任务,例如航运网络中的空集装箱调度问题、共享单车服务中的单车调度问题、云平台上的虚拟机分配问题等,同时也支持用户利用核心组件,快速地定义高效的场景。不仅如此,MARO 还提供了全栈的强化学习支持,包含常用算法以及相关的分布式训练。本文将通过构造一个简单的共享单车场景,来帮助大家理解 MARO 的核心功能和逻辑,以及其与环境交互所实现的优化策略。

发布时间:2021-01-27 类型:深度文章

AAAI 2021 | 不依赖文本也能做翻译?UWSpeech语音翻译系统了解一下

语音到语音翻译已经被越来越多地应用在人们的日常生活和工作中。但是目前的语音翻译系统高度依赖于语音对应的文本,不能应用于如方言、少数民族语言等没有文字的语言。为此,微软亚洲研究院提出了语音翻译系统 UWSpeech,该系统可针对没有文字的语言进行语音系统构建。相关工作已被 AAAI 2021 接收。

发布时间:2021-01-26 类型:深度文章

上新了! 热门开源 AutoML 工具 NNI 2.0 来袭!

近期,微软亚洲研究院发布了 NNI 2.0 版本,其中加入了对“探索性训练”框架 Retiarii、基于掩码的模型压缩加速工具的支持,提供了利用 Python 发起实验 (预览功能) 与多种算力混合训练的能力,并简化了自定义算法的安装方法。本文将全方位解读 NNI 2.0 最新版本中的各项功能,让大家了解这个简单、易用的自动机器学习工具。

发布时间:2021-01-21 类型:深度文章

四两拨千斤,如何做到自然语言预训练加速十倍

随着自然语言处理中的预训练成为研究领域的热点,预训练的成本与计算代价也成为了大家在研究过程中必须考虑的现实问题。本文将会介绍多种在训练模型过程中提高效率,降低成本的方法,希望能对大家的研究有所帮助。

发布时间:2021-01-19 类型:深度文章