新闻中心

排序方式

InnerEye深度学习工具包开源:让医学影像AI普及化

十多年来,微软剑桥研究院的 InnerEye 项目团队一直在开发最先进的机器学习方法,用于三维医学影像的自动定量分析。该项目的一个重要应用是在癌症放射疗法上,协助临床医生进行图像准备和手术计划。通常,癌症放射疗法需要放射肿瘤学专家或专业技术人员手动检查、标记数十个 3D CT 扫描图像,根据癌症的种类,这项任务可能需要一个小时到多个小时不等。项目团队的研究表明,机器学习可以将这个时间缩短到几分钟,帮助临床医生减轻负担。

发布时间:2020-09-25 类型:深度文章

还在捞五条人?不如用AI自己组乐队

上周,《乐队的夏天2》的乐队合作 OST(影视原声)改编赛环节结束,不少乐队都是头一次尝试和其他乐队一起,在短时间内配合进行音乐的改编和演出。来自微软亚洲研究院和浙江大学的全新“音乐人” PopMAG,非常理解这其中的不易,今天就让我们看看它是如何应对的。

发布时间:2020-09-19 类型:深度文章

对话 I 论道机器学习的未来

编者按:近期在微软研究院举办的机器学习前沿论坛中,微软剑桥研究院院长 Christopher Bishop 与微软全球资深副总裁 Peter Lee 进行了一场精彩的炉边对谈,分享了各自对机器学习研究和前沿问题的思考与展望。本文为大家节选、整理了此次对话。

发布时间:2020-09-17 类型:深度文章

强化学习三大方法,改善AI的游戏表现

近年来,强化学习为游戏开发带来了新的机遇,Paidia 项目便是最近的成果之一。该项目由微软剑桥研究院与游戏开发商 Ninja Theory 合作开发,不仅推进了强化学习的前沿技术,创造了全新的游戏体验,还开发了能够真正与人类玩家展开团队合作的游戏智能体。本文将详细介绍 Paidia 项目的三项最新研究成果,以及它们将如何引领现代视频游戏的开发,和其他现实应用领域中的AI创新。

发布时间:2020-09-01 类型:深度文章

如何在机器学习的框架里实现隐私保护?

数据时代,人们从技术中获取便利的同时,也面临着隐私泄露的风险。微软倡导负责任的人工智能,因此机器学习中的隐私保护问题至关重要。本文介绍了目前机器学习中隐私保护领域的最新研究进展,讨论了机密计算、模型隐私和联邦学习等不同层面的隐私保护方法。

发布时间:2020-08-06 类型:深度文章

ICML 2020 | 摆脱warm-up!巧置LayerNorm使Transformer加速收敛

Transformer 网络结构存在 warm-up 阶段超参数敏感、优化过程收敛速度慢等问题。为此,中科院、北京大学和微软亚洲研究院机器学习组的研究员们在 ICML 2020 的最新论文中,从理论上分析了 Transformer 优化困难的原因,并提出了让 Transformer 摆脱 warm-up 阶段并加快收敛速度的解决方法。

发布时间:2020-07-24 类型:深度文章

ICML 2020 | 五篇精选论文,洞悉微软亚洲研究院机器学习前沿

机器学习顶级会议 ICML 2020 于7月13日至18日线上举行。本届 ICML 微软亚洲研究院共有10篇论文入选。我们精选了五篇论文,从鲁棒特征学习、统一预训练模型、机器学习优化、文本切分等领域带你一览机器学习最新成果。

发布时间:2020-07-20 类型:深度文章

微软与清华大学联合提出DeepRSM模型,以AI助力空气污染治理

控制和减少污染物排放是治理空气污染的重要手段,精准的排放-污染物浓度响应曲面可以帮助决策者快速找到效果更好的减排方案。但传统排放-污染物浓度响应曲面需要依赖 CTM 模型进行模拟,其存在计算量庞大、运行耗时耗力、时效性低等问题。对此,微软亚洲研究院与清华大学联合提出 DeepRSM 模型,能够精细地刻画空气污染物浓度,帮助决策者快速找到减排效果更好、成本更低的方案。该研究发表在环境科学顶级期刊《环境科学与技术》上。

发布时间:2020-07-15 类型:深度文章

FastSpeech语音合成系统技术升级,微软联合浙大提出FastSpeech2

基于深度学习的端到端语音合成技术进展显著,但经典自回归模型存在生成速度慢、稳定性和可控性差的问题。去年,微软亚洲研究院和微软 Azure 语音团队联合浙江大学提出了快速、鲁棒、可控的语音合成系统 FastSpeech,近日研究团队又将该技术升级,提出了 FastSpeech 2 和 FastSpeech 2s,在提升语音合成质量的同时,大大简化了训练流程,减少了训练时间,加快了合成速度。

发布时间:2020-06-23 类型:深度文章

让大规模深度学习训练线性加速、性能无损,基于BMUF的Adam优化器并行化实践

深度学习领域经典的 Adam 算法在大规模并行训练的情况下会导致模型性能损失。为了解决这一问题,微软亚洲研究院采用 BMUF 框架对 Adam 算法进行了并行化,并在微软大规模 OCR 和语音产品数据集上进行了测试,使其在并行训练中几乎实现了线性加速的同时,模型性能基本无损。

发布时间:2020-05-28 类型:深度文章